\(A=3x^2y^3-\dfrac{1}{2}x^3y^2\) và \(B=25x^2y^2\)...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 12 2016

chịch chịch chịch

7 tháng 12 2017

Khi xét xem một đa thức có chia hết cho đơn thức ko , ta chỉ s=xét phân biến ko cần xét hệ số vì phân hệ số có thể là phân số .

A ⋮ B Vì phần biến của mỗi hạng tử trong A đều chia hết cho phần biến ở B

11 tháng 12 2018

Bài 2 :

a) Phân thức A xác định \(\Leftrightarrow\hept{\begin{cases}x-2\ne0\\x+2\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ne2\\x\ne-2\end{cases}}}\)

b) \(A=\left(\frac{1}{x-2}-\frac{1}{x+2}\right)\cdot\frac{x^2-4x+4}{4}\)

\(A=\left(\frac{x+2}{\left(x-2\right)\left(x+2\right)}-\frac{x-2}{\left(x-2\right)\left(x+2\right)}\right)\cdot\frac{\left(x-2\right)^2}{4}\)

\(A=\left(\frac{x+2-x+2}{\left(x-2\right)\left(x+2\right)}\right)\cdot\frac{\left(x-2\right)^2}{4}\)

\(A=\frac{4}{\left(x-2\right)\left(x+2\right)}\cdot\frac{\left(x-2\right)^2}{4}\)

\(A=\frac{4\cdot\left(x-2\right)^2}{\left(x-2\right)\left(x+2\right)\cdot4}\)

\(A=\frac{x-2}{x+2}\)

c) Thay x = 4 ta có :

\(A=\frac{4-2}{4+2}=\frac{2}{6}=\frac{1}{3}\)

Vậy.........

11 tháng 12 2018

\(4x^2y^3.\frac{2}{4}x^3y=4x^2y^3.\frac{1}{2}x^3y=2x^5y^4\)

\(\left(5x-2\right)\left(25x^2+10x+4\right)\)

\(=\left(5x-2\right)\left[\left(5x\right)^2+5x.2+2^2\right]\)

\(=\left(5x\right)^3-2^3\)

\(=125x^3-8\)

29 tháng 11 2017

2)

a) \(5x^2y-10xy^2\)

\(=5xy\left(x-2y\right)\)

b) \(3\left(x+3\right)-x^2+9\)

\(=3\left(x+3\right)-\left(x^2-3^2\right)\)

\(=3\left(x+3\right)-\left(x-3\right)\left(x+3\right)\)

\(=\left(x+3\right)\left[3-\left(x-3\right)\right]\)

\(=\left(x+3\right)\left(3-x+3\right)\)

\(=\left(x+3\right)\left(6-x\right)\)

c) \(x^2-y^2+xz-yz\)

\(=\left(x^2-y^2\right)+\left(xz-yz\right)\)

\(=\left(x-y\right)\left(x+y\right)+z\left(x-y\right)\)

\(=\left(x-y\right)\left(x+y+z\right)\)

29 tháng 11 2017

3)

a) \(A=\dfrac{x^2}{x^2-4}-\dfrac{x}{x-2}+\dfrac{2}{x+2}\)

\(\Leftrightarrow A=\dfrac{x^2}{\left(x-2\right)\left(x+2\right)}-\dfrac{x}{x-2}+\dfrac{2}{x+2}\)

Điều kiện xác định là: \(\left\{{}\begin{matrix}x-2\ne0\Rightarrow x\ne2\\x+2\ne0\Rightarrow x\ne-2\end{matrix}\right.\)

b) \(A=\dfrac{x^2}{x^2-4}-\dfrac{x}{x-2}+\dfrac{2}{x+2}\)

\(\Leftrightarrow A=\dfrac{x^2}{\left(x-2\right)\left(x+2\right)}-\dfrac{x}{x-2}+\dfrac{2}{x+2}\) MTC: \(\left(x-2\right)\left(x+2\right)\)

\(\Leftrightarrow A=\dfrac{x^2}{\left(x-2\right)\left(x+2\right)}-\dfrac{x\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}+\dfrac{2\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}\)

\(\Leftrightarrow A=\dfrac{x^2-x\left(x+2\right)+2\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}\)

\(\Leftrightarrow A=\dfrac{x^2-x^2-2x+2x-4}{\left(x-2\right)\left(x+2\right)}\)

\(\Leftrightarrow A=\dfrac{-4}{\left(x-2\right)\left(x+2\right)}\)

c) Thay \(x=1\) và biểu thức A ta được:

\(\dfrac{-4}{\left(1-2\right)\left(1+2\right)}=\dfrac{-4}{\left(-1\right).3}=\dfrac{-4}{-3}=\dfrac{4}{3}\)

Vậy giá trị của biểu thức A tại \(x=1\)\(\dfrac{4}{3}\)

17 tháng 12 2018

\(x^3y-5x^2y-2xy+10y\)

\(=\left(x^3y-2xy\right)+\left(10y-5x^2y\right)\)

\(=xy\left(x^2-2\right)+5y\left(2-x^2\right)\)

\(=xy\left(x^2-2\right)-5y\left(x^2-2\right)\)

\(=\left(xy-5y\right)\left(x^2-2\right)\)

17 tháng 12 2018

\(2,x^3y-5x^2y-2xy+10y\)

\(=x^2y\left(x-5\right)-2y\left(x-5\right)\)

\(=\left(x-5\right)\left(x^2y-2y\right)\)

\(=\left(x-5\right)y\left(x^2-2\right)\)

6 tháng 11 2019

\(C1:=3+1-3y\)

\(=4-3y\)

\(C2:\)

\(a.=3x\left(2y-1\right)\)

\(b.=\left(x-y\right)\left(x+y\right)+4\left(x+y\right)\)

\(=\left(x-y+4\right)\left(x+y\right)\)

\(C3:\)

\(a.6x^2+2x+12x-6x^2=7\)

\(14x=7\)

\(x=\frac{1}{2}\)

\(b.\frac{1}{5}x-2x^2+2x^2+5x=-\frac{13}{2}\)

\(\frac{26}{5}x=-\frac{13}{2}\)

\(x=-\frac{13}{2}\times\frac{5}{26}\)

\(x=-\frac{5}{4}\)

3 tháng 7 2020

Bạn Moon làm kiểu gì vậy ?

1) \(\left(3x^2y^2+x^2y^2\right):\left(x^2y^2\right)-3y\)

\(=\left[\left(x^2y^2\right)\left(3+1\right)\right]:\left(x^2y^2\right)-3y\)

\(=4-3y\)

2) a, \(6xy-3x=\left(3x\right)\left(2y-1\right)\)

b, \(x^2-y^2+4x+4y=\left(x+y\right)\left(x-y\right)+4\left(x+y\right)\)

\(=\left(x+y\right)\left(x-y+4\right)\)

3) a,  \(2x\left(3x+1\right)+\left(4-2x\right)3x=7\)

\(< =>6x^2+2x+12x-6x^2=7\)

\(< =>14x=7< =>x=\frac{7}{14}\)

b, \(\frac{1}{2}x\left(\frac{2}{5}-4x\right)+\left(2x+5\right)x=-6\frac{1}{2}\)

\(< =>\frac{x}{2}.\frac{2}{5}-\frac{x}{2}.4x+2x^2+5x=-\frac{13}{2}\)

\(< =>\frac{x}{5}-2x^2+2x^2+5x=-\frac{13}{2}\)

\(< =>\frac{26x}{5}=\frac{-13}{2}\)

\(< =>26x.2=\left(-13\right).5\)

\(< =>52x=-65< =>x=-\frac{65}{52}=-\frac{5}{4}\)

18 tháng 2 2020

Bài 2 :

a) \(\left(5x^2y-8xy^2+y^3\right)\left(2x^3+x^2y-3y^2\right)\)

\(=10x^5y+5x^4y^2-15x^2y^3-16x^4y^2-8x^3y^3+24xy^4+2x^3y^3+x^2y^4-3y^5\)

\(=10x^5y-11x^4y^2-6x^3y^3+x^2y^4-15x^2y^3+24xy^4-3y^5\)