Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2. Ta có:
\(3^{n+2}-2^{n+2}+3^n-2^n\)
= \(\left(3^n.9+3^n\right)-\left(2^{n-1}.8+2^{n-1}.2\right)\)
= \(3^n\left(9+1\right)-2^{n-1}\left(8+2\right)\)
= \(3^n.10-2^{n-1}.10\)
= \(\left(3^n-2^{n-1}\right).10⋮10\forall n\)
Vậy \(3^{n+2}-2^{n+2}+3^n-2^n⋮10\)
Đề bài: Cho 1/c = 1/2(1/a+1/b) (với a,b,c khác 0 ; b khác c ) chứng minh rằng a/b=a-c/c-b
Giải:
Ta có: 1/c = 1/2(1/a+1/b) <=> 1/c:1/2 = 1/a+1/b <=> 1/c.2/1 = (a+b)/ab <=> 2/c = (a+b)/ab
<=> 2ab = ac + bc (1).
Lại có: a/b=a-c/c-b <=> a(c-b) = b(a-c) <=> ac – ab = ab – bc <=> 2ab = ac + bc (2).
Từ (1) và (2) suy ra đpcm.
bạn ơi giải thích dùm mình đoạn 1/c : 2/1 = a+b / ab với . Cho mình hỏi làm sao biến đổi từ 1/a + 1/b => a+b / ab thế ?
2.
\(A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+....+\dfrac{1}{n^2}\\ =\dfrac{1}{2.2}+\dfrac{1}{3.3}+....+\dfrac{1}{n.n}\\ < \dfrac{1}{1.2}+\dfrac{1}{2.3}+....+\dfrac{1}{\left(n-1\right).n}\\ =\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+....+\dfrac{1}{n-1}-\dfrac{1}{n}=1-\dfrac{1}{n}< 1\)
You k làm đc bài 1 ak -_- làm full cho người ta đi chớ :v
\(\dfrac{1}{c}=\dfrac{1}{2}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\)
\(\Rightarrow\dfrac{1}{c}=\dfrac{1}{2}\left(\dfrac{a+b}{ab}\right)\)
\(\Rightarrow\dfrac{1}{c}=\dfrac{a+b}{2ab}\)
\(\Rightarrow ac+bc=2ab\)
\(\Rightarrow ac+bc-ab=ab\)
\(\Rightarrow ac-ab=ab-bc\)
\(\Rightarrow a\left(c-b\right)=b\left(a-c\right)\)
\(\Rightarrow\dfrac{a}{b}=\dfrac{a-c}{c-b}\left(đpcm\right)\)