Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài làm:
Ta có: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)
\(\Leftrightarrow\frac{ab+bc+ca}{abc}=\frac{1}{a+b+c}\)
\(\Leftrightarrow\left(ab+bc+ca\right)\left(a+b+c\right)=abc\)
\(\Leftrightarrow a^2b+ab^2+c^2a+ca^2+b^2c+bc^2+2abc=0\)
\(\Leftrightarrow\left(a^2+2ab+b^2\right)c+ab\left(a+b\right)+c^2\left(a+b\right)=0\)
\(\Leftrightarrow\left(a+b\right)\left(ab+bc+ca+c^2\right)=0\)
\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)
=> Hoặc a+b=0 hoặc b+c=0 hoặc c+a=0
=> Hoặc a=-b hoặc b=-c hoặc c=-a
Ko mất tổng quát, g/s a=-b
a) Ta có: vì a=-b thay vào ta được:
\(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=-\frac{1}{b^3}+\frac{1}{b^3}+\frac{1}{c^3}=\frac{1}{c^3}\)
\(\frac{1}{a^3+b^3+c^3}=\frac{1}{-b^3+b^3+c^3}=\frac{1}{c^3}\)
=> đpcm
b) Ta có: \(a+b+c=1\Leftrightarrow-b+b+c=1\Rightarrow c=1\)
=> \(P=-\frac{1}{b^{2021}}+\frac{1}{b^{2021}}+\frac{1}{c^{2021}}=\frac{1}{1^{2021}}=1\)
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)
\(\Leftrightarrow\frac{a+b}{ab}=\frac{c-\left(a+b+c\right)}{ac+bc+c^2}\)
\(\Leftrightarrow\frac{a+b}{ab}==\frac{-a-b}{ac+bc+c^2}\)
\(\Leftrightarrow\left(a+b\right)\left(ac+bc+c^2\right)=-\left(a+b\right)ab\)
\(\Leftrightarrow\left(a+b\right)\left(ac+bc+c^2\right)+\left(a+b\right)ab=0\)
\(\Leftrightarrow\left(a+b\right)\left(ac+bc+c^2+ab\right)=0\)
\(\Leftrightarrow\left(a+b\right)\left(a+c\right)\left(b+c\right)=0\)
=> a = - b hoặc a= - c hoặc b = - c
Với \(a=-b\) thì \(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=\frac{1}{-b^3}+\frac{1}{b^3}+\frac{1}{c^3}=\frac{1}{c^3}\) (1)
\(\frac{1}{a^3+b^3+c^3}=\frac{1}{-b^3+b^3+c^3}=\frac{1}{c^3}\)(2)
Từ (1);(2) => \(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=\frac{1}{a^3+b^3+c^3}\)
Còn 2 TH nữa là b = - c và - c = a bn xét tiếp nha
Có : \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)
\(\frac{bc+ca+ab}{abc}=\frac{1}{a+b+c}\)
\(\Leftrightarrow\left(a+b+c\right)\left(bc+ca+ab\right)=abc\)
\(\Leftrightarrow abc+ca^2+a^2b+b^2c+abc+ab^2+c^2b+c^2a+abc=abc\)
\(\Leftrightarrow3abc+ca^2+a^2b+b^2c+ab^2+c^2b+c^2a=abc\)
\(\Leftrightarrow2abc+a^2b+a^2c+b^2c+b^2a+c^2b+c^2a=0\)
\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)
<=> a + b = 0 hoặc b + c = 0 hoặc c + a = 0
Với a + b = 0
=> a = -b
Thay vào biểu thức cần chứng minh
=> \(\frac{1}{c^3}=\frac{1}{c^3}\) (đúng)
Tượng tự với 2 trường hợp còn lại .
Lời giải:
Ta có:
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)
\(\Leftrightarrow \frac{1}{a}+\frac{1}{b}+\frac{1}{c}-\frac{1}{a+b+c}=0\)
\(\Leftrightarrow \frac{a+b}{ab}+\frac{a+b}{c(a+b+c)}=0\)
\(\Leftrightarrow (a+b)\left[\frac{1}{ab}+\frac{1}{c(a+b+c)}\right]=0\)
\(\Leftrightarrow (a+b).\frac{c(a+b+c)+ab}{abc(a+b+c)}=0\Leftrightarrow (a+b).\frac{(c+a)(c+b)}{abc(a+b+c)}=0\)
\(\Leftrightarrow (a+b)(b+c)(c+a)=0\)
\(\Rightarrow \left[\begin{matrix} a+b=0\\ b+c=0\\ c+a=0\end{matrix}\right.\)
Không mất tổng quát giả sử $a+b=0$
$\Rightarrow$
$\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=\frac{1}{(-b)^3}+\frac{1}{b^3}+\frac{1}{c^3}=\frac{1}{c^3}$
\(\frac{1}{a^3+b^3+c^3}=\frac{1}{(-b)^3+b^3+c^3}=\frac{1}{c^3}\)
\(\Rightarrow \frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=\frac{1}{a^3+b^3+c^3}\) (đpcm)