K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 12 2020

Ta có:

\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{a+b+c}\\ \Leftrightarrow\left(ab+bc+ca\right)\left(a+b+c\right)=abc\\ \Leftrightarrow\left(ab+bc+ca\right)\left(a+b\right)+c^2\left(a+b\right)=0\\ \Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)

Suy ra:

Trong 3 số a,b,c có 2 số đối nhau. Không mất tính tổng quát, giả sử a=-b

Thay vào ta dễ thấy:

\(\dfrac{1}{a^n}+\dfrac{1}{b^n}+\dfrac{1}{c^n}=\dfrac{1}{a^n+b^n+c^n}\left(=\dfrac{1}{c^n}\right)\) (ĐPCM)

21 tháng 12 2020

Tui cảm ơn nha

 

sao lâu thế mọi n

11 tháng 3 2016

muốn nhanh hải từ từ chứ! :D

1. Vì $n^3$ và $n$ cùng tính chẵn lẻ nên\(n^3+n+2\) chia hết cho 2.

2. Chắc đề là a^2+b^2+c^2=a^3+b^3+c^3=1.

18 tháng 3 2019

\(\frac{1}{a}+\frac{1}{b}=\frac{1}{a+b+c}-\frac{1}{c}\)

\(\Leftrightarrow\frac{a+b}{ab}=\frac{a+b}{-\left(a+b+c\right).c}\)

TH1:a+b=0

=> a=-b

\(\frac{1}{a^n}+\frac{1}{b^n}+\frac{1}{c^n}=\frac{1}{\left(-b\right)^n}+\frac{1}{b^n}+\frac{1}{c^n}=\frac{1}{c^n}\)(vì n lẻ nên (-b)n âm)

\(\frac{1}{a^n+b^n+c^n}=\frac{1}{\left(-b\right)^n+b^n+c^n}=\frac{1}{c^n}\)

TH2: ab=-(a+b+c)

=> ab=-ac-bc-c2 => ab+ac=-bc-c2=> a.(b+c)=-b.(b+c)

\(\Rightarrow\orbr{\begin{cases}a=-b\\b=-c\end{cases}}\)c/m tương tự trường hợp 1 :))

18 tháng 3 2019

>: nhầm

dòng 8: a.(b+c)=-c.(b+c) =>... 

3 tháng 8 2021

Xét \(\left(a^2+b^2+c^2+d^2\right)-\left(a+b+c+d\right)\)

\(=a\left(a-1\right)+b\left(b-1\right)+c\left(c-1\right)+d\left(d-1\right)\)

Vì a là số nguyên dương nên a(a–1) là hai số tự nhiên liên tiếp

⇒a−1⋮2

Tương tự ta có \(b\left(b-1\right);c\left(c-1\right);d\left(d-1\right)\) đều chia hết cho 2

=> \(a\left(a-1\right)+b\left(b-1\right)+c\left(c-1\right)+d\left(d-1\right)\) là số chẵn

Lại có \(a^2+b^2=c^2+d^2\)\(\Rightarrow a^2+b^2+c^2+d^2=2\left(c^2+d^2\right)\)là số chẵn.

Do đó \(a+b+c+d\) là số chẵn mà \(a+b+c+d>2\) (Do \(a,b,c,d\in\) N*)

 \(a+b+c+d\) là hợp số

Tick nha kkk 😘

3 tháng 8 2021

cậu viết lại công thức trong câu trả lời dduocj không hiu

14 tháng 12 2014
1/a+1/b+1/c = 1/(a+b+c) 
=> (ab+bc+ca)(a+b+c) = abc 
=> (ab+bc+ca)(a+b)+(abc+bcc+cca-abc) = 0 
=> (ab+bc+ca)(a+b)+c^2(a+b) = 0 
=> (a+b)(a+c)(b+c) = 0 
=> trong a,b,c có 2 số đối nhau 
giả sử a,b đối nhau khi đó vì n lẽ nên 
1/a^n + 1/b^n + 1/c^n = 1/c^n = 1/(a^n + b^n + c^n)
  • luu y n le nha ban!
7 tháng 12 2016

cho tam giac ABC can tai A trung tuyen AM goi D la diem doi xung cua A qua M va K la trung diem cua MC E la diem doi xung cua Dqua K

a) chung minh tu giac ABCD la hinh thoi

b)chung minh tu giac AMCE la hinh chu nhat

c)AM va BE cat nhau tai I chung minh I la trung diem cua BE

d)chung minh AK,CI,EM dong quy

17 tháng 7 2019

Ta biểu thị 2 số hạng liên tiếp của dãy có dạng:\(\frac{\left(n-1\right)n}{2};\frac{n\left(n+1\right)}{2}\)

\(\frac{\left(n-1\right)n}{2}+\frac{n\left(n+1\right)}{2}\)

\(=\frac{\left(n-1\right)n+n\left(n+1\right)}{2}\)

\(=\frac{n\left(n-1+n+1\right)}{2}\)

\(=\frac{n\times2n}{2}\)

\(=n^2\)

\(\Rightarrow\)Tổng hai số hạng liên tiếp của dãy bao giờ cũng là số chính phương

15 tháng 11 2016

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)

\(\Rightarrow\frac{1}{a+b+c}=\frac{bc+ca+ab}{abc}\)

\(\Rightarrow\left(a+b+c\right)\left(bc+ca+ab\right)=abc\)

\(\Rightarrow abc+a^2c+a^2b+b^2c+abc+ab^2+bc^2+ac^2+abc=abc\)

\(\Rightarrow2abc+a^2c+a^2b+b^2c+ab^2+bc^2+ac^2=0\)

\(\Rightarrow\left(abc+a^2b\right)+\left(ac^2+a^2c\right)+\left(b^2c+b^2a\right)+\left(bc^2+abc\right)=0\)

\(\Rightarrow ab\left(a+c\right)+ac\left(a+c\right)+b^2\left(a+c\right)+bc\left(a+c\right)=0\)

\(\Rightarrow\left(ab+ac+b^2+bc\right)\left(a+c\right)=0\)

\(\Rightarrow\left[\left(ab+ac\right)+\left(b^2+bc\right)\right]\left(a+c\right)=0\)

\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(a+c\right)=0\)

Do đó trong a , b , c luôn có 2 số đối nhau.

Phần 2 : Do vai trò a , b , c như nhau nên coi \(a=-b\)( Do có 2 số đối nhau)

\(\Rightarrow a^n=-b^n\)(Vì n lẻ )

\(\Rightarrow\frac{1}{a^n}+\frac{1}{b^n}+\frac{1}{c^n}=\frac{a^n+b^n}{a^n.b^n}+\frac{1}{c^n}=0+\frac{1}{c^n}=\frac{1}{c^n}\)

\(\frac{1}{a^n+b^n+c^n}=\frac{1}{\left(a^n+b^n\right)+c^n}=\frac{1}{0+c^n}=\frac{1}{c^n}\)

\(\Rightarrow\frac{1}{a^n}+\frac{1}{b^n}+\frac{1}{c^n}=\frac{1}{a^n+b^n+c^n}\)

Vậy ...

AH
Akai Haruma
Giáo viên
31 tháng 1 2018

Lời giải:

Ta có:

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)

\(\Leftrightarrow \frac{1}{a}+\frac{1}{b}+\frac{1}{c}-\frac{1}{a+b+c}=0\)

\(\Leftrightarrow \frac{a+b}{ab}+\frac{a+b}{c(a+b+c)}=0\)

\(\Leftrightarrow (a+b)\left(\frac{1}{ab}+\frac{1}{c(a+b+c)}\right)=0\)

\(\Leftrightarrow \frac{(a+b)[c(a+b+c)+ab]}{abc(a+b+c)}=0\)

\(\Leftrightarrow (a+b)(b+c)(c+a)=0\)

Xét : \(A=\frac{1}{a^n}+\frac{1}{b^n}+\frac{1}{c^n}-\frac{1}{a^n+b^n+c^n}\)

\(A=\frac{a^n+b^n}{a^nb^n}+\frac{a^n+b^n}{c^n(a^n+b^n+c^n)}\)

\(A=(a^n+b^n)\left(\frac{1}{a^nb^n}+\frac{1}{c^n(a^n+b^n+c^n)}\right)\)

\(A=\frac{(a^n+b^n)[c^n(a^n+b^n+c^n)+a^nb^n]}{a^nb^nc^n(a^n+b^n+c^n)}\)

\(A=\frac{(a^n+b^n)(b^n+c^n)(c^n+a^n)}{a^nb^nc^n(a^n+b^n+c^n)}\)

Vì $n$ lẻ nên :

\((a^n+b^n)(b^n+c^n)(c^n+a^n)=(a+b)(b+c)(c+a)(a^{n-1}+....+b^{n-1})(b^{n-1}+..+c^{n-1})(c^{n-1}+...+a^{n-1})\)

\(=0\) do \((a+b)(b+c)(c+a)=0\)

Do đó: \(A=0\Leftrightarrow \frac{1}{a^n}+\frac{1}{b^n}+\frac{1}{c^n}=\frac{1}{a^n+b^n+c^n}\)

24 tháng 2 2017

kb với mk đi mk giải cho