Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử chỉ có 3 số có tổng chia hết cho 4 vậy thì gọi 3 số đó là a,b,c ta có
a+b+c chia hết cho 4 và giả sử a,b,c đều lẻ vậy thì a+b+c ko chia hết cho 4 vô lí !
Vậy theo nguyên tắc dirichlet ta chỉ chọn được 4 số có tổng chia hết cho 4
Cách 1:
Nếu có hai số có cùng số dư khi chia cho 100 thì bài toán được giải quyết.Giả sử không có hai số nào có cùng số dư khi chia cho 100.Khi đó, có ít nhất 51 số chia cho 100 có số dư khác 50 là a1,a2,,,.....a51
Đặt bi = -ai(1≤i≤51).Xét 102 số ai;bi.Theo nguyên tắc đi-rích-lê thì tồn tại i#j sao cho ai=bj(mod 100)(tức là ai;bj có cùng số dư khi chia cho 100)
=> ai - bj chia hết cho 100.mà bj=-aj
=> ai+aj chia hết cho 100
Cách 2:
Nếu có hai số có cùng số dư khi chia cho 100 thì bài toán được giải quyết
Giả sử có ít nhất 51 số không chia hết cho 100.Xét 50 cặp :(1,99),(2,98),......(49,51),(50,50) mà mỗi cặp có tổng là 100
Học nguyên lí Đi-rích-lê chưa
(Nguyên lí Đi-rích-lê: Khi cho n+1 con thỏ vào n cái chuồng thì luôn có ít nhất một chuồng có nhiều hơn 2 con)
Áp dụng nguyên lí Đi-rích-lê ta có:Khi lấy một số chia cho 109 thì có thể sẽ đc các số dư là:0,1,2,3...,107,108 (109 số dư)
Vậy khi lấy 110 số chia cho 109 sẽ có ít nhất 2 số có cùng số dư khi chia cho 109.
Suy ra hiêu của chúng chia hết cho 109 (đpcm)