K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Giả sử  0≤a1<a2<...<a1010≤2015  là 1010 số tự nhiên được chọn .

Xét 1009 số : bi=a1010−ai(i=1,2,...,1009)

=>  0<b1009<b1008<...<b1≤2015

Theo nguyên lý Dirichlet trong 2019 số  ai,bi không vượt quá 2015 luôn tồn tại 2 số bằng nhau, mà các số  ai,bi  không thể bằng nhau

=>  Tồn tại i , j  sao cho  :  aj=bi

=>  aj=a1010−ai=>a1010=ai+aj     ( đpcm ) .

11 tháng 5 2019

Dirchle bạn mik nói là đi dép lê =))

4 tháng 2 2019

Ta sẽ dùng phản chứng 

Gọi 4 cạnh của tứ giác là a , b , c , d ( a,b,c,d \(\inℕ^∗\))

Giả sử không có bất kì 2 cạnh nào bằng nhau

Đặt \(\hept{\begin{cases}x=\frac{b+c+d}{a}\\y=\frac{c+d+a}{b}\\z=\frac{d+a+b}{c}\end{cases}}\left(x;y;z\inℕ^∗\right)\)(Do tổng 3 cạnh bất kì chia hết cho cạnh còn lại)

Theo bất đẳng thức trong tứ giác  thì dễ thấy \(x;y;z>1\)

Mà x,y,z là số tự nhiên nên \(x;y;z\ge2\)

Không mất tính tổng quát của bài toán ta giả sử a > b > c > d thì khi đó x < y < z

Ta có : \(\hept{\begin{cases}x\ge2\\y>x\end{cases}}\Rightarrow y\ge3\)

tương tự : \(z\ge4\)

Từ điều giả sử\(\Rightarrow\)  \(\hept{\begin{cases}b+c+d\ge2a\\c+d+a\ge3b\\d+a+b\ge4c\end{cases}}\)

Cộng 3 vế vào ta được \(2a+2b+2c+3d\ge2a+3b+4c\)

                               \(\Rightarrow3d\ge b+2c\)(Vô lí do b > c > d)

Nên điều giả sử là sai 

Vậy luôn tồn tại ít nhất 2 cạnh bằng nhau trong tứ giác đó

14 tháng 8 2021

1. ta có abc + deg = 560

abc : deg = 3 dư 68 

(1 + 3) x deg = 560- 68 = 492

deg = 492 : 4 = 123

abc là : 123 x 3 + 68 = 437

2. ta có :

ab + ba = 99

ba - ab = 27

ba = ( 99 + 27) : 2 = 63

ab = 99 - 63 = 36

HT

14 tháng 8 2021

bạn tribinh lm kiểu j thế ?????