K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 9 2016

Số đó là 3991 nha bn

18 tháng 9 2016

viết bài làm đầy đủ

Gọi số cần tìm là a ( a ∈ N* ; 99 < a < 1000 )

Theo bài ra , ta có :

\(\hept{\begin{cases}a-8⋮17\\a-16⋮25\end{cases}}\Rightarrow\hept{\begin{cases}\left(a-8\right)+17⋮17\\\left(a-16\right)+25⋮25\end{cases}}\Rightarrow\hept{\begin{cases}a+9⋮17\\a+9⋮25\end{cases}}\)

\(\Rightarrow a-9∈BC\left(17,25\right)\)

Vì 17 và 25 nguyên tố cùng nhau

=> BCNN( 17 . 25 )  = 17 . 25 = 425

=> BC( 17 , 25 ) = { 0 ; 425 ; 850 ; 1275 ; ... }

=> a + 9 ∈ { 0 ; 425 ; 850 ; 1275 ; ... }

=> a  ∈ { 416 ; 841 ; 1266 ; ... } ( do a ∈ N* )

Mà 99 < a  < 1000

=> a  ∈ { 416 ; 841 }

AH
Akai Haruma
Giáo viên
25 tháng 6

Lời giải:
Do $a$ chia $25$ dư $16$ nên $a=25k+16$ với $k$ nguyên.

$a-8\vdots 17$

$\Rightarrow 25k+8\vdots 17$

$\Rightarrow 25k+25\vdots 17$

$\Rightarrow 25(k+1)\vdots 17$

$\Rightarrow k+1\vdots 17\Rightarrow k=17m-1$ với $m$ nguyên.

Vậy $a=25k+16=25(17m-1)+16=425m-9$

Do $a$ có 3 chữ số nên $100\leq 425m-9\leq 999$

$\Rightarrow 0< m<3$

$\Rightarrow m=1, 2$

$\Rightarrow a=416$ hoặc $a=841$

26 tháng 6 2016

Gọi số đó là abcd , thì abcd tận cùng là 06 (do abcd chia 100 dư 6)

=> abcd là số chẵn

Q chia 51 dư 17 => Q chia hết cho 17

Ta có ab06 chia hết cho 17

=> ac89 + 17 = ab06 (sao cho c + 1 = b)

=> ac x 100 + 89 chia hết cho 17

=> ad x 100 + 289 chia hết cho 17 (d + 2 = c)

=> ad x 100 chia hết cho 17

=> ad chia hết cho 17

=> ad thuộc {17;34;51;68;85}

abcd lần lượt thuộc {2006;3706;5406;7106;8806}

do abcd chia 51 dư 17, mà 51 chia hết cho 3, 17 chia 3 dư 2 (=) abcd chia 3 dư 2

trong tập hợp trên, chỉ có các số 2006, 7106 thõa mãn dữ kiện trên

=> Q có thể là 2006; 7106