Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì CE là đường kính của (O)→DE⊥DC→DE//AB(CD⊥AB)
→\(\widehat{DAB}=180^o-\widehat{ADE}=\widehat{ABE}\)
→DBED là hình thang cân
Ta có: O,H là trung điểm CE,CB→OH là đường trung bình ΔCBE
→BE=2OH→AD=2OH vì ABED là hình thang cân
Vì CECE là đường kính →BC⊥BE
→\(AD^2+BC^2=BE^2+BC^2=CE^2=4R^2\)
Gọi MI∩BC=F. Vì CD⊥AB=I, M là trung điểm AD
→\(\widehat{CIF}=\widehat{MID}=\widehat{MDI}=\widehat{ADI}=\widehat{IBC}\)
→IF⊥BC
Lại có OH⊥BC→OH//MI (đpcm)
Nguồn: hangbich
a: ΔOCD cân tại O
mà OI là đường cao
nên I là trung điểm của CD
Xét tứ giác AEBC có
O là trung điểm chung của AB và EC
AB=EC
Do dó: ABEC là hình chữ nhật
=>AE=BC=BD
Xét ΔCED có CI/CD=CO/CE
nen OI//DE
=>DE//AB
mà DB=AE
nên ABED là hình thang cân
b: ΔOBC cân tại O
mà OH là đường cao
nên H là trung điểm của CB
Xét ΔBAC có BO/BA=BH/BC
nên OH//AC và OH=AC/2=AD/2
c: AD^2+BC^2=AC^2+CB^2=AB^2 ko đổi
d: Xét ΔDAC có DM/DA=DI/DC
nên MI//AC//OH
a.Xét 2 tam giác vuông ABO và ACO có
BO=CO (đều là BK đường tròn)
AB=AC (Độ dài hai tiếp tuyến của một đường tròn cùng xuất phát từ một điểm bên ngoài đường tròn thì bằng nhau)
góc ABO=góc ACO=90 độ
Suy ra tam giác ABO=tam giác ACo (c.g.c) suy ra góc BAO=góc CAO
Tam giác ABC cân tại A nên AO vừa là phân giác của góc BAC vừa là đường cao của tam giác ABC hạ từ A xuống BC vậy AO vuông góc với BC
c,Ta có góc BCO=góc CAO (cùng phụ với góc AOC)
góc CAO=góc BAO
suy ra góc BCO=góc BAO (1)
Xét tam giác vuông BCH có góc CBH+góc BCO=90 độ (2)
Ta có góc ABC+góc BAO=90 độ (3)
Từ (1) (2) (3) suy ra góc CBH=góc ABC nên BC là phân giác của góc ABH
mình chỉ biết làm câu a và c thôi mong bạn thông cảm