K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 9 2016

Ta có : \(\hept{\begin{cases}0\le a\le2\\0\le b\le2\\0\le c\le2\end{cases}}\)\(\Rightarrow\hept{\begin{cases}a\left(2-a\right)\ge0\\b\left(2-b\right)\ge0\\c\left(2-c\right)\ge0\end{cases}}\)

\(\Rightarrow-a^2+2a-b^2+2b-c^2+2c\ge0\)

\(\Leftrightarrow a^2+b^2+c^2\le2\left(a+b+c\right)=2.3=6\)

Vậy Max P = 6

20 tháng 10 2021

đề này thầy mình cho.

1 tháng 4 2020

đặt \(t=ab+bc+ca\)

\(=>t=ab+bc+ca\le\frac{1}{3}\left(a+b+c\right)^2=3\)

mặt khác 

\(\left(a+b+c\right)^2=a^2+b^2+c^2+2\left(ab+bc+ca\right)\)

\(=>a^2+b^2+c^2=9-2\left(ab+bc+ca\right)\)

khi đó 

\(P=\frac{9-2t}{t}\)(zới t nhỏ hơn hoặc = 3)

xét \(f\left(t\right)=\frac{9-2t}{t}\left(t\le3\right)\)

\(f'\left(t\right)=-\frac{9}{t^2}< 0\)

=> f(t) N Biến \(\left(-\infty,3\right)\)

min f(t)=f(3)=1

koo tồn tại max\(f\left(t\right)\)

zậy minP=1 khi a=b=c=1

11 tháng 11 2018

\(-1\le a\le2\Rightarrow\hept{\begin{cases}a+1\ge0\\a-2\le0\end{cases}\Rightarrow\left(a+1\right)\left(a-2\right)\le0}\)

Tương tự \(\left(b+1\right)\left(b-2\right)\le0,\left(c+1\right)\left(c-2\right)\le0\)

=> (a+1)(a-2)+(b+1)(b-2)+(c+1)(c-2)\(\le\)0 => a2+b2+c2-(a+b+c)-6\(\le\)

=>a2+b2+c2 \(\le\)

Dấu "=" xảy ra <=> (a+1)(  a-2)=0, (b+1)(b-2)=0, (c+1)(c-2)=0 , a+b+c=0 <=> a=2, b=c=-1 và các hoán vị 

AH
Akai Haruma
Giáo viên
12 tháng 5 2020

Lời giải:

Tìm min:
Áp dụng hệ thức quen thuộc của BĐT AM-GM là $a^2+b^2+c^2\geq ab+bc+ac$

$\Rightarrow P=\frac{a^2+b^2+c^2}{ab+bc+ac}\geq 1$

Vậy $P_{\min}=1$ khi $a=b=c=1$

---------------------------

Tìm max:

Đặt $ab+bc+ac=t$

Ta có: \(P=\frac{(a+b+c)^2-2(ab+bc+ac)}{ab+bc+ac}=\frac{9-2(ab+bc+ac)}{ab+bc+ac}=\frac{9-2t}{t}=\frac{9}{t}-2(1)\)

Vì $a,b,c\leq 2\Rightarrow (a-2)(b-2)(c-2)\leq 0$

$\Leftrightarrow abc-2(ab+bc+ac)+4(a+b+c)-8\leq 0$

$\Leftrightarrow 2(ab+bc+ac)\geq abc+4(a+b+c)-8=abc+4$

Mà $a,b,c\geq 0\Rightarrow abc\geq 0$

$\Rightarrow 2(ab+bc+ac)\geq abc+4\geq 4\Rightarrow t=ab+bc+ac\geq 2(2)$

Từ $(1);(2)\Rightarrow P\leq \frac{9}{2}-2=\frac{5}{2}$

Vậy $P_{\max}=\frac{5}{2}$ khi $(a,b,c)=(0,2,1)$ và hoán vị.

AH
Akai Haruma
Giáo viên
12 tháng 5 2020

Huyền Subi: $a,b,c$ đều là số không âm thì làm sao mà giá trị min P lại âm được bạn? Hơn nữa, lớp 9 thì chưa học đạo hàm, nên lời giải này không có giá trị.

6 tháng 1 2021

Ta có \(\left(a+2\right)\left(b+2\right)\left(c+2\right)+\left(2-a\right)\left(2-b\right)\left(2-c\right)\ge0\)

\(\Leftrightarrow4\left(ab+bc+ca\right)+16\ge0\)

\(\Leftrightarrow ab+bc+ca\ge-4\).

Lại có: \(ab+bc+ca\le\dfrac{\left(a+b+c\right)^2}{3}=0\).

Do đó \(\left(ab+bc+ca\right)^2\le16\).

Mặt khác do \(a+b+c=0\) nên dễ dàng chứng minh được \(2\left(a^4+b^4+c^4\right)=\left(ab+bc+ca\right)^2\) (Bạn xem ở đây).

Do đó \(a^4+b^4+c^4\le32\) (đpcm).

2 tháng 5 2017

từ gt \(\Rightarrow\)abc>0  => (2-a)(2-b)(2-c)>0 => 
8+2(ab+bc+ca)−4(a+b+c)−abc≥0 => 2(ab+bc+ca) \(\ge\)4 + abc \(\ge\)4
=> (a+b+c)^2≥4+a2+b2+c2 => a^2+b^2+c^2 \(\le\) 5