Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta chứng minh 1 bđt phụ:
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\) (với a;b;c>0)
Thật vậy,ta có: \(\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\left(a+b+c\right)=3+\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)+\left(\frac{a}{c}+\frac{c}{a}\right)\)
Mà: \(\frac{a}{b}+\frac{b}{a}\ge2;\frac{b}{c}+\frac{c}{b}\ge2;\frac{c}{a}+\frac{a}{c}\ge2\left(Cauchy\right)\)nên ta có đpcm
Vậy bđt đc chứng minh
Áp dụng:
\(\frac{1}{a^2+2bc}+\frac{1}{b^2+2ac}+\frac{1}{c^2+2ab}\ge\frac{9}{a^2+b^2+c^2+2ab+2bc+2ac}=\frac{9}{\left(a+b+c\right)^2}\ge9\)
Dấu bằng khi a=b=c=1/3
Bài 2:
a) Áp dụng BĐT AM - GM ta có:
\(\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)=\dfrac{1}{4a}+\dfrac{1}{4b}\) \(\ge2\sqrt{\dfrac{1}{4^2ab}}=\dfrac{2}{4\sqrt{ab}}=\dfrac{1}{2\sqrt{ab}}\)
\(\ge\dfrac{1}{a+b}\) (Đpcm)
b) Trừ 1 vào từng vế của BĐT ta được BĐT tương đương:
\(\left(\frac{x}{2x+y+z}-1\right)+\left(\frac{y}{x+2y+z}-1\right)+\left(\frac{z}{x+y+2z}-1\right)\le\frac{-9}{4}\)
\(\Leftrightarrow-\left(x+y+z\right)\left(\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\right)\le-\frac{9}{4}\)
\(\Leftrightarrow\left(x+y+z\right)\left(\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\right)\ge\frac{9}{4}\)
Áp dụng BĐT phụ \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{9}{a+b+c}\) ta có:
\(\dfrac{1}{2x+y+z}+\dfrac{1}{x+2y+z}+\dfrac{1}{x+y+2z}\)
\(\ge\dfrac{9}{2x+y+z+x+2y+z+x+y+2z}=\dfrac{9}{4\left(x+y+z\right)}\)
\(\Leftrightarrow\left(x+y+z\right)\left(\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\right)\ge\frac{9}{4}\)
\(\Leftrightarrow\dfrac{x}{2x+y+z}+\dfrac{y}{x+2y+z}+\dfrac{z}{x+y+2z}\le\dfrac{3}{4}\) (Đpcm)
Bài 1:
Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có:
\(VT\ge\dfrac{\left(a+b\right)^2}{a-1+b-1}=\dfrac{\left(a+b\right)^2}{a+b-2}\)
Nên cần chứng minh \(\dfrac{\left(a+b\right)^2}{a+b-2}\ge8\)
\(\Leftrightarrow\left(a+b\right)^2\ge8\left(a+b-2\right)\)
\(\Leftrightarrow a^2+2ab+b^2\ge8a+8b-16\)
\(\Leftrightarrow\left(a+b-4\right)^2\ge0\) luôn đúng
Từ a+b+c=6 \(\Rightarrow\)a+b=6-c
Ta có: ab+bc+ac=9\(\Leftrightarrow\)ab+c(a+b)=9
\(\Leftrightarrow\)ab=9-c(a+b)
Mà a+b=6-c (cmt)
\(\Rightarrow\)ab=9-c(6-c)
\(\Rightarrow\)ab=9-6c+c2
Ta có: (b-a)2\(\ge\)0 \(\forall\)b, c
\(\Rightarrow\)b2+a2-2ab\(\ge\)0
\(\Rightarrow\)(b+a)2-4ab\(\ge\)0
\(\Rightarrow\)(a+b)2\(\ge\)4ab
Mà a+b=6-c (cmt)
ab= 9-6c+c2 (cmt)
\(\Rightarrow\)(6-c)2\(\ge\)4(9-6c+c2)
\(\Rightarrow\)36+c2-12c\(\ge\)36-24c+4c2
\(\Rightarrow\)36+c2-12c-36+24c-4c2\(\ge\)0
\(\Rightarrow\)-3c2+12c\(\ge\)0
\(\Rightarrow\)3c2-12c\(\le\)0
\(\Rightarrow\)3c(c-4)\(\le\)0
\(\Rightarrow\)c(c-4)\(\le\)0
\(\Rightarrow\hept{\begin{cases}c\ge0\\c-4\le0\end{cases}}\)hoặc\(\hept{\begin{cases}c\le0\\c-4\ge0\end{cases}}\)
*\(\hept{\begin{cases}c\ge0\\c-4\le0\end{cases}\Leftrightarrow\hept{\begin{cases}c\ge0\\c\le4\end{cases}\Leftrightarrow}0\le c\le4}\)
*
Bài 2:
Đặt \(2017-x=a;2019-x=b;2x-4036=c\)
\(\Rightarrow a+b+c=0\)
Do \(a+b+c=0\Rightarrow a+b=-c\Leftrightarrow\left(a+b\right)^3=-c^3\)
Có : \(a^3+b^3+c^3=\left(a+b\right)^3-3ab\left(a+b\right)+c^3=-c^3-3ab.\left(-c\right)+c^3=3abc\)
Do \(\left(2017-x\right)^3+\left(2019-x\right)^3+\left(2x-4036\right)^3=0\)
\(\Rightarrow3\left(2017-x\right)\left(2019-x\right)\left(2x-4036\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2017-x=0\\2019-x=0\\2x-4036=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2017\\x=2019\\x=2018\end{matrix}\right.\)
Bài này lằng nhằng quá. Thôi kệ làm thử phát :>
(1)Ta có:
\(\frac{9}{5}=1+\frac{4}{5}=\frac{1}{2}+\frac{1}{2}+\frac{4}{5}\)
Vì \(\frac{1}{2}>\frac{1}{5};\frac{1}{3}>\frac{1}{5};...;\frac{1}{5}=\frac{1}{5}\)
\(\Rightarrow\frac{1}{2}+\frac{1}{3}+...+\frac{1}{5}>\frac{1}{5}.4=\frac{4}{5}\)
Vì \(\frac{1}{6}>\frac{1}{10};\frac{1}{7}>\frac{1}{10};...;\frac{1}{10}=\frac{1}{10}\)
\(\Rightarrow\frac{1}{6}+\frac{1}{7}+...+\frac{1}{10}>\frac{1}{10}.5=\frac{1}{2}\)
\(\frac{1}{11}>\frac{1}{20};\frac{1}{12}>\frac{1}{20};...;\frac{1}{20}=\frac{1}{20}\)
\(\Rightarrow\frac{1}{11}+\frac{1}{12}+...+\frac{1}{20}>\frac{1}{20}.10=\frac{1}{2}\)
Từ trên \(\Rightarrow\frac{9}{5}< A\)
(2)Ta có:
\(\frac{25}{6}=4+\frac{1}{6}=3+\frac{1}{2}+\frac{1}{2}+\frac{1}{6}\)
Có được \(\frac{1}{2}=\frac{1}{2}\)
Vì \(\frac{1}{3}=\frac{1}{3};\frac{1}{4}< \frac{1}{3};..\frac{1}{11}< \frac{1}{3}\)
\(\Rightarrow\frac{1}{3}+\frac{1}{4}+...+\frac{1}{11}< \frac{1}{3}.9=3\)
Vì \(\frac{1}{12}=\frac{1}{12};\frac{1}{13}< \frac{1}{12}\)
\(\Rightarrow\frac{1}{12}+\frac{1}{13}< \frac{1}{12}.2=\frac{1}{6}\)
Vì \(\frac{1}{14}=\frac{1}{14};\frac{1}{15}< \frac{1}{14};...\frac{1}{20}< \frac{1}{14}\)
\(\Rightarrow\frac{1}{14}+\frac{1}{15}+...+\frac{1}{20}< \frac{1}{14}.7=\frac{1}{2}\)
Từ trên \(\Rightarrow A< \frac{25}{6}\)
Từ (1) và (2)
\(\Rightarrowđpcm\)
Bạn j ở trên ơi? Bạn làm vừa dài vừa khó hiểu vậy thì bạn kia làm sao mà hiểu được. Ngay cả mị còn ko hiểu. Bài của bạn nhìn sai bét rồi còn gì. Làm thế chỉ mỏi tay mà thôi. Còn đây là cách của mị
Bài này họ không bảo là tính nhanh lên bạn cứ tính tổng cộng tất cả rồi so sánh và kết luận ra ý. Mà mị cũng không chắc nữa. Nhưng bạn cứ làm theo mị ấy bài kia làm mỏi tay lắm. Làm thì phải ngắn chứ.
Dark horse cute thông minh
Mị lớp 10 nên học qua rồi
giả sử \(a_1\left(1-a_2\right);a_2\left(1-a_3\right);...;a_9\left(1-a_1\right)>\frac{1}{4}\)
\(\Rightarrow a_1\left(1-a_2\right).a_2\left(1-a_3\right)...a_9\left(1-a_1\right)>\left(\frac{1}{4}\right)^9\)
mà\(a_1\left(1-a_1\right)=a_1-a^2_1=\frac{1}{4}-\left(\frac{1}{2}-a_1\right)^2\le\frac{1}{4}\)
CMTT \(a_2\left(1-a_2\right);a_3\left(1-a_3\right);...;a_9\left(1-a_9\right)\le\frac{1}{4}\)
=> gt sai=>phải có 1hs bé hơn 1/4
đề đăng sai nhiều quá