K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 11 2017

giả sử \(a_1\left(1-a_2\right);a_2\left(1-a_3\right);...;a_9\left(1-a_1\right)>\frac{1}{4}\)

\(\Rightarrow a_1\left(1-a_2\right).a_2\left(1-a_3\right)...a_9\left(1-a_1\right)>\left(\frac{1}{4}\right)^9\)

\(a_1\left(1-a_1\right)=a_1-a^2_1=\frac{1}{4}-\left(\frac{1}{2}-a_1\right)^2\le\frac{1}{4}\)

CMTT \(a_2\left(1-a_2\right);a_3\left(1-a_3\right);...;a_9\left(1-a_9\right)\le\frac{1}{4}\)

=> gt sai=>phải có 1hs bé hơn 1/4

15 tháng 11 2017

đề đăng sai nhiều quá

30 tháng 1 2019

Ta chứng minh 1 bđt phụ:

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\) (với a;b;c>0)
Thật vậy,ta có: \(\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\left(a+b+c\right)=3+\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)+\left(\frac{a}{c}+\frac{c}{a}\right)\)

Mà: \(\frac{a}{b}+\frac{b}{a}\ge2;\frac{b}{c}+\frac{c}{b}\ge2;\frac{c}{a}+\frac{a}{c}\ge2\left(Cauchy\right)\)nên ta có đpcm 

Vậy bđt đc chứng minh
Áp dụng:

\(\frac{1}{a^2+2bc}+\frac{1}{b^2+2ac}+\frac{1}{c^2+2ab}\ge\frac{9}{a^2+b^2+c^2+2ab+2bc+2ac}=\frac{9}{\left(a+b+c\right)^2}\ge9\)

Dấu bằng khi a=b=c=1/3

3 tháng 7 2017

Bài 2:

a) Áp dụng BĐT AM - GM ta có:

\(\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)=\dfrac{1}{4a}+\dfrac{1}{4b}\) \(\ge2\sqrt{\dfrac{1}{4^2ab}}=\dfrac{2}{4\sqrt{ab}}=\dfrac{1}{2\sqrt{ab}}\)

\(\ge\dfrac{1}{a+b}\) (Đpcm)

b) Trừ 1 vào từng vế của BĐT ta được BĐT tương đương:

\(\left(\frac{x}{2x+y+z}-1\right)+\left(\frac{y}{x+2y+z}-1\right)+\left(\frac{z}{x+y+2z}-1\right)\le\frac{-9}{4}\)

\(\Leftrightarrow-\left(x+y+z\right)\left(\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\right)\le-\frac{9}{4}\)

\(\Leftrightarrow\left(x+y+z\right)\left(\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\right)\ge\frac{9}{4}\)

Áp dụng BĐT phụ \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{9}{a+b+c}\) ta có:

\(\dfrac{1}{2x+y+z}+\dfrac{1}{x+2y+z}+\dfrac{1}{x+y+2z}\)

\(\ge\dfrac{9}{2x+y+z+x+2y+z+x+y+2z}=\dfrac{9}{4\left(x+y+z\right)}\)

\(\Leftrightarrow\left(x+y+z\right)\left(\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\right)\ge\frac{9}{4}\)

\(\Leftrightarrow\dfrac{x}{2x+y+z}+\dfrac{y}{x+2y+z}+\dfrac{z}{x+y+2z}\le\dfrac{3}{4}\) (Đpcm)

3 tháng 7 2017

Bài 1:

Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có:

\(VT\ge\dfrac{\left(a+b\right)^2}{a-1+b-1}=\dfrac{\left(a+b\right)^2}{a+b-2}\)

Nên cần chứng minh \(\dfrac{\left(a+b\right)^2}{a+b-2}\ge8\)

\(\Leftrightarrow\left(a+b\right)^2\ge8\left(a+b-2\right)\)

\(\Leftrightarrow a^2+2ab+b^2\ge8a+8b-16\)

\(\Leftrightarrow\left(a+b-4\right)^2\ge0\) luôn đúng

Từ a+b+c=6 \(\Rightarrow\)a+b=6-c

Ta có: ab+bc+ac=9\(\Leftrightarrow\)ab+c(a+b)=9

                               \(\Leftrightarrow\)ab=9-c(a+b)

           Mà a+b=6-c (cmt)

                                \(\Rightarrow\)ab=9-c(6-c)

                                \(\Rightarrow\)ab=9-6c+c2

Ta có: (b-a)2\(\ge\)\(\forall\)b, c

  \(\Rightarrow\)b2+a2-2ab\(\ge\)0

  \(\Rightarrow\)(b+a)2-4ab\(\ge\)0

  \(\Rightarrow\)(a+b)2\(\ge\)4ab

Mà a+b=6-c (cmt)

         ab= 9-6c+c2 (cmt)

  \(\Rightarrow\)(6-c)2\(\ge\)4(9-6c+c2)

  \(\Rightarrow\)36+c2-12c\(\ge\)36-24c+4c2

  \(\Rightarrow\)36+c2-12c-36+24c-4c2\(\ge\)0

  \(\Rightarrow\)-3c2+12c\(\ge\)0

  \(\Rightarrow\)3c2-12c\(\le\)0

  \(\Rightarrow\)3c(c-4)\(\le\)0

  \(\Rightarrow\)c(c-4)\(\le\)0

\(\Rightarrow\hept{\begin{cases}c\ge0\\c-4\le0\end{cases}}\)hoặc\(\hept{\begin{cases}c\le0\\c-4\ge0\end{cases}}\)

*\(\hept{\begin{cases}c\ge0\\c-4\le0\end{cases}\Leftrightarrow\hept{\begin{cases}c\ge0\\c\le4\end{cases}\Leftrightarrow}0\le c\le4}\)

*

4 tháng 8 2015

Dự đoán dấu "=" và chọn điểm rơi phù hợp để áp dụng bất đẳng thức Trung bình cộng - Trung bình nhân

17 tháng 3 2019

Câu 3b

Phương trình chứa ẩn ở mẫu

17 tháng 3 2019

Bài 2:

Đặt \(2017-x=a;2019-x=b;2x-4036=c\)

\(\Rightarrow a+b+c=0\)

Do \(a+b+c=0\Rightarrow a+b=-c\Leftrightarrow\left(a+b\right)^3=-c^3\)

Có : \(a^3+b^3+c^3=\left(a+b\right)^3-3ab\left(a+b\right)+c^3=-c^3-3ab.\left(-c\right)+c^3=3abc\)

Do \(\left(2017-x\right)^3+\left(2019-x\right)^3+\left(2x-4036\right)^3=0\)

\(\Rightarrow3\left(2017-x\right)\left(2019-x\right)\left(2x-4036\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2017-x=0\\2019-x=0\\2x-4036=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2017\\x=2019\\x=2018\end{matrix}\right.\)

23 tháng 10 2019

Bài này lằng nhằng quá. Thôi kệ làm thử phát :>

(1)Ta có:

\(\frac{9}{5}=1+\frac{4}{5}=\frac{1}{2}+\frac{1}{2}+\frac{4}{5}\)

Vì \(\frac{1}{2}>\frac{1}{5};\frac{1}{3}>\frac{1}{5};...;\frac{1}{5}=\frac{1}{5}\)

\(\Rightarrow\frac{1}{2}+\frac{1}{3}+...+\frac{1}{5}>\frac{1}{5}.4=\frac{4}{5}\)

Vì \(\frac{1}{6}>\frac{1}{10};\frac{1}{7}>\frac{1}{10};...;\frac{1}{10}=\frac{1}{10}\)

\(\Rightarrow\frac{1}{6}+\frac{1}{7}+...+\frac{1}{10}>\frac{1}{10}.5=\frac{1}{2}\)

\(\frac{1}{11}>\frac{1}{20};\frac{1}{12}>\frac{1}{20};...;\frac{1}{20}=\frac{1}{20}\)

\(\Rightarrow\frac{1}{11}+\frac{1}{12}+...+\frac{1}{20}>\frac{1}{20}.10=\frac{1}{2}\)

Từ trên \(\Rightarrow\frac{9}{5}< A\)

(2)Ta có:

\(\frac{25}{6}=4+\frac{1}{6}=3+\frac{1}{2}+\frac{1}{2}+\frac{1}{6}\)

Có được \(\frac{1}{2}=\frac{1}{2}\)

Vì \(\frac{1}{3}=\frac{1}{3};\frac{1}{4}< \frac{1}{3};..\frac{1}{11}< \frac{1}{3}\)

\(\Rightarrow\frac{1}{3}+\frac{1}{4}+...+\frac{1}{11}< \frac{1}{3}.9=3\)

Vì \(\frac{1}{12}=\frac{1}{12};\frac{1}{13}< \frac{1}{12}\)

\(\Rightarrow\frac{1}{12}+\frac{1}{13}< \frac{1}{12}.2=\frac{1}{6}\)

Vì \(\frac{1}{14}=\frac{1}{14};\frac{1}{15}< \frac{1}{14};...\frac{1}{20}< \frac{1}{14}\)

\(\Rightarrow\frac{1}{14}+\frac{1}{15}+...+\frac{1}{20}< \frac{1}{14}.7=\frac{1}{2}\)

Từ trên \(\Rightarrow A< \frac{25}{6}\)

Từ (1) và (2)

\(\Rightarrowđpcm\)

23 tháng 10 2019

Bạn j ở trên ơi? Bạn làm vừa dài vừa khó hiểu vậy thì bạn kia làm sao mà hiểu được. Ngay cả mị còn ko hiểu. Bài của bạn nhìn sai bét rồi còn gì. Làm thế chỉ mỏi tay mà thôi. Còn đây là cách của mị

Bài này họ không bảo là tính nhanh lên bạn cứ tính tổng cộng tất cả rồi so sánh và kết luận ra ý. Mà mị cũng không chắc nữa. Nhưng bạn cứ làm theo mị ấy bài kia làm mỏi tay lắm. Làm thì phải ngắn chứ.

Dark horse cute thông minh

Mị lớp 10 nên học qua rồi