Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi 4 số đó theo lần lượt là a,b,c,d
Ta có : \(\frac{a}{2}=\frac{b}{3};\frac{b}{4}=\frac{c}{5};\frac{c}{6}=\frac{d}{7}\)và a + b + c + d = 210
\(\frac{a}{2}=\frac{b}{3};\frac{b}{4}=\frac{c}{5}\Rightarrow\frac{a}{8}=\frac{b}{12};\frac{b}{12}=\frac{c}{15}\Rightarrow\frac{a}{8}=\frac{b}{12}=\frac{c}{15}\)
\(\frac{a}{8}=\frac{b}{12}=\frac{c}{15};\frac{c}{6}=\frac{d}{7}\Rightarrow\frac{a}{16}=\frac{b}{24};\frac{c}{30}=\frac{d}{35}\Rightarrow\frac{a}{16}=\frac{b}{24}=\frac{c}{30}=\frac{d}{35}\)
Áp dụng tính chất của dãy tỉ số bằng nhau là \(\frac{a}{16}=\frac{b}{24}=\frac{c}{30}=\frac{d}{35}=\frac{a+b+c+d}{16+24+30+35}=\frac{210}{105}=2\)
\(\Rightarrow\frac{a}{16}=2\Rightarrow a=32\)
\(\Rightarrow\frac{b}{24}=2\Rightarrow b=48\)
\(\Rightarrow\frac{c}{30}=2\Rightarrow c=60\)
\(\Rightarrow\frac{d}{35}=2\Rightarrow d=70\)
Vậy các số lần lượt là a,b,c,d là 32,48,60,70
Chúc bạn hok tốt
Answer:
Câu 1:
Gọi ba phần được chia từ số 470 lần lượt là x, y, z
Có: Ba phần tỉ lệ nghịch với 3, 4, 5
\(\Rightarrow x3=y4=z5\Rightarrow\frac{x}{20}=\frac{y}{15}=\frac{z}{12}\) và \(x+y+z=470\)
Áp dụng tính chất dãy tỉ số bằng nhau
\(\frac{x}{20}=\frac{y}{15}=\frac{z}{12}=\frac{x+y+z}{20+15+12}=\frac{470}{47}=10\)
\(\Rightarrow\hept{\begin{cases}x=200\\y=150\\z=120\end{cases}}\)
Câu 2:
Gọi ba phần được chia từ số 555 lần lượt là x, y, z
\(\Rightarrow\hept{\begin{cases}x+y+z=55\\4x=5y=6z\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x+y+z=55\\\frac{x}{15}=\frac{y}{12}=\frac{z}{10}=\frac{x}{15+12+10}=\frac{555}{35}=\frac{111}{7}\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=\frac{1665}{7}\\y=\frac{1332}{7}\\z=\frac{1110}{7}\end{cases}}\)
Câu 3:
Gọi ba phần được chia từ số 314 lần lượt là x, y, z
\(\Rightarrow\hept{\begin{cases}x+y+z=314\\\frac{2}{3}x=\frac{2}{5}y=\frac{3}{7}z\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x+y+z=314\\\frac{2x}{3}=\frac{2y}{5}=\frac{3z}{7}\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x+y+z=314\\\frac{x}{9}=\frac{y}{15}=\frac{z}{14}=\frac{x+y+z}{9+15+14}=\frac{314}{38}=\frac{157}{19}\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=\frac{1413}{19}\\y=\frac{2355}{19}\\z=\frac{2198}{19}\end{cases}}\)
Gọi 4 phần đó lần lượt là a,b,c,d
Theo đề ta có:
\(a+b+c+d=210\)
\(\frac{a}{2}=\frac{b}{3};\frac{b}{4}=\frac{c}{5};\frac{c}{6}=\frac{d}{7}\)
\(\frac{a}{2}=\frac{b}{3};\frac{b}{4}=\frac{c}{5}\Leftrightarrow\frac{a}{8}=\frac{b}{12};\frac{b}{12}=\frac{c}{15}\Rightarrow\frac{a}{8}=\frac{b}{12}=\frac{c}{15}\)
\(\frac{a}{8}=\frac{b}{12}=\frac{c}{15};\frac{c}{6}=\frac{d}{7}\Leftrightarrow\frac{a}{16}=\frac{b}{24}=\frac{c}{30};\frac{a}{30}=\frac{d}{35}\Rightarrow\frac{a}{16}=\frac{b}{24}=\frac{c}{30}=\frac{d}{35}\)
Áp dụng tc dãy tỉ số bằng nhau ta có:
\(\frac{a}{16}=\frac{b}{24}=\frac{c}{30}=\frac{d}{35}=\frac{a+b+c+d}{16+24+30+35}=\frac{210}{105}=2\)
\(\Rightarrow\begin{cases}\frac{a}{16}=2\Rightarrow a=2\cdot16=32\\\frac{b}{24}=2\Rightarrow b=2\cdot24=48\\\frac{c}{30}=2\Rightarrow c=2\cdot30=60\\\frac{d}{35}=2\Rightarrow d=2\cdot35=70\end{cases}\)