Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để đơn thức A chia hết cho -3xn+2yn+1 khi và chỉ khi
\(\hept{\begin{cases}n+2\le2n\\n+1\le3\end{cases}\Leftrightarrow\hept{\begin{cases}n+2\le2n\\n\le2\end{cases}}}\)
Thay n = 2 vào \(n+2\le2n\), ta có :
\(2+2\le2\times2\)(t/mãn)
Vậy n\(\le2\) thì Đơn thúc A chia hết cho đơn thức B
\(A\) chia hết cho B khi \(\left\{{}\begin{matrix}2n\ge n+2\\3\ge n+1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}n\ge2\\n\le2\end{matrix}\right.\) \(\Rightarrow n=2\)
\(\dfrac{A}{B}=\dfrac{x^{2n}y^3}{2.\left(-3\right)x^{n+2}y^{n+1}}=\dfrac{-1}{6}x^{2n-n-2}y^{3-n-1}=\dfrac{-1}{6}x^{n-2}y^{2-n}\Rightarrow\left\{{}\begin{matrix}n-2\ge0\\2-n\ge0\end{matrix}\right.\Rightarrow n=2}\)
2*AB-3MN-K+P^2=C^2
=>2*(-20)x^4y^4-3*2x^4y^4+25x^4y^4-9x^4y^4=K
=>K=-30x^4y^4
cau 2 , n(2n-3)-2n(n+1)=2n^2-3n-2n^2-2n=-5n
-5chia het cho 5 nen nhan voi moi so nguyen deu chia het cho 5 suy ra n(2n-3)-2n(n+1)chia het cho 5
1,a) (x-1)(x^2+x+1)=x^3-1
VT=x3+x2+x-x2-x-1
=(x3-1)+(x2-x2)+(x-x)
=x3-1+0+0
=x3-1=VP (dpcm)
tương tự a
`a)`
`4x^3 * (-6x^3y)`
`= 4*(-6) * (x^3*x^3) * y`
`= -24x^6y`
`b)`
`(-2y)*(-5xy^2)`
`= (-2)*(-5)*x*(y*y^2)`
`= 10xy^3`
`c)`
`(-2a)^3 * (2ab)^2`
`= (-8a^3) * (4a^2b^2)`
`= (-8*4)*(a^3*a^2)*b^2`
`= -32a^5b^2`
a) \(4x^3\cdot\left(-6x^3y\right)\)
\(=\left(4\cdot-6\right)\cdot\left(x^3\cdot x^3\right)\cdot y\)
\(=-24x^6y\)
b) \(\left(-2y\right)\cdot\left(-5xy^2\right)\)
\(=\left(-2\cdot-5\right)\cdot\left(y\cdot y^2\right)\cdot x\)
\(=10xy^3\)
c) \(\left(-2a\right)^3\cdot\left(2ab\right)^2\)
\(=-8a^3\cdot4a^2b^2\)
\(=\left(-8\cdot4\right)\cdot\left(a^3\cdot a^2\right)\cdot b^2\)
\(=-32a^5b^2\)
\(-3x^2y:xy=-3\left(x^2y:xy\right)=-3x\)
\(2a^3b^3:\left(-2ab^2\right)=\left(2:-2\right)\left(a^3:a\right)\left(b^3:b^2\right)=-a^2b\)
\(\dfrac{1}{5}m^2n^3:\left(-5m^2n^2\right)=\left(\dfrac{1}{5}:-5\right)\left(m^2:m^2\right)\left(n^3:n^2\right)=-\dfrac{1}{25}n\)