Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(K_2CO_3+2HCl\rightarrow2KCl+CO_2+H_2O\)
\(Na_2CO_3+2HCl\rightarrow2NaCl+CO_2+H_2O\)
b) Đặt \(n_{K_2CO_3}=a\left(mol\right),n_{Na_2CO_3}=b\left(mol\right)\)
Ta có hệ phương trình:
\(\hept{\begin{cases}138a+106b=24,4\\149a+117b=26,6\end{cases}}\Leftrightarrow\hept{\begin{cases}a=0,1\\b=0,1\end{cases}}\).
Từ đây bạn tính ra nhé.
a) \(x^2-5x+xy-5y=\left(x^2+xy\right)-\left(5x+5y\right)=x\left(x+y\right)-5\left(x+y\right)=\left(x-5\right)\left(x+y\right)\)
b) \(4x^2-\left(x-2\right)^2=\left(2x\right)^2-\left(x-2\right)^2=\left(2x+x-2\right)\left(2x-x+2\right)=\left(3x-2\right)\left(x+2\right)\)
c) \(48x^2y^2-3y^2+6xy-3x^2=3\left(16x^2y^2-y^2+2xy-x^2\right)=3\left[\left(4xy\right)^2-\left(y^2-2xy+x^2\right)\right]\)
\(=3\left[\left(4xy\right)^2-\left(y-x\right)^2\right]=3\left(4xy+y-x\right)\left(4xy-y+x\right)\)
d) \(2x^2-5x-7=2x^2+2x-7x-7=2x\left(x+1\right)-7\left(x+1\right)=\left(2x-7\right)\left(x+1\right)\)
a: \(A=\left(\dfrac{2+x}{2-x}-\dfrac{4x^2}{x^2-4}-\dfrac{2-x}{2+x}\right):\dfrac{2\left(x-3\right)}{2-x}\)
\(=\dfrac{4+4x+x^2+4x^2-\left(2-x\right)^2}{\left(2-x\right)\left(2+x\right)}\cdot\dfrac{2-x}{2\left(x-3\right)}\)
\(=\dfrac{5x^2+4x+4-4+4x-x^2}{\left(2+x\right)}\cdot\dfrac{1}{2\left(x-3\right)}\)
\(=\dfrac{4x^2+8x}{x+2}\cdot\dfrac{1}{2\left(x-3\right)}=\dfrac{4x\left(x+2\right)}{2\left(x+2\right)}\cdot\dfrac{1}{x-3}=\dfrac{2x}{x-3}\)
b: |x-2|=2
=>x-2=2 hoặc x-2=-2
=>x=0(nhận) hoặc x=4(nhận)
Khi x=0 thì \(A=\dfrac{2\cdot0}{0-3}=\dfrac{-2}{3}\)
Khi x=4 thì \(A=\dfrac{2\cdot4}{4-3}=8\)
c: A>0
=>x/x-3>0
=>x>3 hoặc x<0
=>x>3
a,Ta có: a^5 - a = a(a^4 - 1) = a(a² - 1)(a² + 1) = a(a - 1)(a + 1)(a² + 1)
= a(a - 1)(a + 1)(a² - 4 + 5)
= a(a - 1)(a + 1)[ (a² - 4) + 5) ]
= a(a - 1)(a + 1)(a² - 4) + 5a(a - 1)(a + 1)
= a(a - 1)(a + 1)(a - 2)(a + 2) + 5a(a - 1)(a + 1)
= (a - 2)(a - 1)a(a + 1)(a + 2) + 5a(a - 1)(a + 1)
Do (a - 2)(a - 1)a(a + 1)(a + 2) là tích của 5 số nguyên liên tiếp => (a - 2)(a - 1)a(a + 1)(a + 2) chia hết cho 5 mà 5a(a - 1)(a + 1) chia hết cho 5
=> (a - 2)(a - 1)a(a + 1)(a + 2) + 5a(a - 1)(a + 1) chia hết cho 5.
=> a^5 - a chia hết cho 5
b,Phương pháp Fertma: Ta có n thuộc Z và 7 là số nguyên tố
Nên n^7 đồng dư n (mod 7)
=> n^7 - n đồng dư 0 (mod 7)
=> n^7 - n chia hết cho 7
- Phương pháp Qui nạp: Đặt A(n)=n^7 - n (cho dễ làm)
+ n=0 => A(n)=0 chia hết cho 7
+Giả sử n=k thì A(k)= k^7-k chia hết cho 7
+Với n=k+1 thì
A(k+1)= (k+1)^7-(k+1)
= k^7 + 7k^6 + 21k^5 + 35k^4 + 35k^3 + 21k^2 + 7k +1 - k -1
= k^7 - k + 7( k^6 +3k^5 + 5k^4 + 5k^3 +3k^2 +k)
Do k^7-k chia hết cho 7
& 7( k^6 +3k^5 + 5k^4 + 5k^3 +3k^2 +k) chia hết cho 7
Suy ra: A(k+1) chia hết cho 7
Vậy: n^7 - n chia hết cho 7
k minh nha
Mà a^5 chia hết cho 5 => a chia hết cho 5
Chứng minh
a) a5-a chia hết cho 5
b) a7-a chia hết cho 7
a,Ta có: a^5 - a = a(a^4 - 1) = a(a² - 1)(a² + 1) = a(a - 1)(a + 1)(a² + 1)
= a(a - 1)(a + 1)(a² - 4 + 5)
= a(a - 1)(a + 1)[ (a² - 4) + 5) ]
= a(a - 1)(a + 1)(a² - 4) + 5a(a - 1)(a + 1)
= a(a - 1)(a + 1)(a - 2)(a + 2) + 5a(a - 1)(a + 1)
= (a - 2)(a - 1)a(a + 1)(a + 2) + 5a(a - 1)(a + 1)
Do (a - 2)(a - 1)a(a + 1)(a + 2) là tích của 5 số nguyên liên tiếp => (a - 2)(a - 1)a(a + 1)(a + 2) chia hết cho 5 mà 5a(a - 1)(a + 1) chia hết cho 5
=> (a - 2)(a - 1)a(a + 1)(a + 2) + 5a(a - 1)(a + 1) chia hết cho 5.
=> a^5 - a chia hết cho 5
b,Phương pháp Fertma: Ta có n thuộc Z và 7 là số nguyên tố
Nên n^7 đồng dư n (mod 7)
=> n^7 - n đồng dư 0 (mod 7)
=> n^7 - n chia hết cho 7
- Phương pháp Qui nạp: Đặt A(n)=n^7 - n (cho dễ làm)
+ n=0 => A(n)=0 chia hết cho 7
+Giả sử n=k thì A(k)= k^7-k chia hết cho 7
+Với n=k+1 thì
A(k+1)= (k+1)^7-(k+1)
= k^7 + 7k^6 + 21k^5 + 35k^4 + 35k^3 + 21k^2 + 7k +1 - k -1
= k^7 - k + 7( k^6 +3k^5 + 5k^4 + 5k^3 +3k^2 +k)
Do k^7-k chia hết cho 7
& 7( k^6 +3k^5 + 5k^4 + 5k^3 +3k^2 +k) chia hết cho 7
Suy ra: A(k+1) chia hết cho 7
Vậy: n^7 - n chia hết cho 7
Mà a^5 chia hết cho 5 => a chia hết cho 5
nhé !
hình như đây là hóa mà????