K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: AM vuông góc BD

=>AM vuông góc (BCD)

b: Kẻ DK vuông góc BC

=>BK vuông góc BC

(ABD) vuông góc (BCD)

=>DK vuông góc BA

=>(BCD) vuông góc (ABC)

c: AN là giao tuyến chung của (ABC) và (ANM)

=>MH vuông góc AN

=>MH vuông góc (ABC)

5 tháng 1 2017

Giải sách bài tập Toán 11 | Giải sbt Toán 11

a) MB' qua M và song song với (ABC) và (ABD) ⇒ MB′ song song với giao tuyến AB của hai mặt phẳng này. Ta có: MB′ // AB nên MB' và AB xác định một mặt phẳng. Giả sử MB cắt AB' tại I.

Ta có: I ∈ BM ⇒ I ∈ (BCD)

I ∈ AB′ ⇒ I ∈ (ACD)

Nên I ∈ (BCD) ∩ (ACD) = CD

Có: I ∈ CD

Vậy ba đường thẳng AB', BM và CD đồng quy tại I.

b) MB′ // AB Giải sách bài tập Toán 11 | Giải sbt Toán 11

Kẻ MM′ ⊥ CD và BH ⊥ CD

Ta có: MM′ // BH Giải sách bài tập Toán 11 | Giải sbt Toán 11

Mặt khác:

Giải sách bài tập Toán 11 | Giải sbt Toán 11 Giải sách bài tập Toán 11 | Giải sbt Toán 11

Do đó: Giải sách bài tập Toán 11 | Giải sbt Toán 11

Vậy Giải sách bài tập Toán 11 | Giải sbt Toán 11

c) Tương tự ta có: Giải sách bài tập Toán 11 | Giải sbt Toán 11

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Vậy:

Giải sách bài tập Toán 11 | Giải sbt Toán 11

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023

a) Xét tam giác ABC cân tại A có

I là trung điểm của BC

\( \Rightarrow AI \bot BC\)

Xét tam giác ACD cân tại D có

I là trung điểm của BC

\( \Rightarrow DI \bot BC\)

Ta có \(AI \bot BC,DI \bot BC \Rightarrow BC \bot \left( {AID} \right)\)

b) \(BC \bot \left( {AID} \right);BC \subset \left( {BCD} \right) \Rightarrow \left( {BCD} \right) \bot \left( {AID} \right)\)

\(\left( {BCD} \right) \cap \left( {AID} \right) = DI\)

Trong (AID) có \(AH \bot DI\)

\( \Rightarrow AH \bot \left( {BCD} \right)\)

c) Ta có \(BC \bot \left( {AID} \right);IJ \subset \left( {AID} \right) \Rightarrow BC \bot IJ\)

Mà \(IJ \bot AD\)

Do đó IJ là đường vuông góc chung của AD và BC.

21 tháng 1 2019

  Đề kiểm tra 15 phút Hình học 11 Chương 3 có đáp án (Đề 3)

- Theo giả thiết:

   Đề kiểm tra 15 phút Hình học 11 Chương 3 có đáp án (Đề 3)

ta có:

   Đề kiểm tra 15 phút Hình học 11 Chương 3 có đáp án (Đề 3)

- Vậy ta có:

   Đề kiểm tra 15 phút Hình học 11 Chương 3 có đáp án (Đề 3)

- Lại có:

   Đề kiểm tra 15 phút Hình học 11 Chương 3 có đáp án (Đề 3)

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023

a)     Vì \(AB \bot \left( {BCD} \right) \Rightarrow AB \bot CD\left( 1 \right)\)

Có H là trực tâm của tam giác BCD \( \Rightarrow BH \bot CD\left( 2 \right)\)

Tử (1) và (2) \( \Rightarrow CD \bot \left( {ABH} \right)\)

b)    Vì \(AB \bot \left( {BCD} \right) \Rightarrow AB \bot CD\left( 1 \right)\)

Có K là trực tâm của tam giác BCD \( \Rightarrow AK \bot CD\left( 2 \right)\)

Từ (1) và (2) \( \Rightarrow CD \bot \left( {ABK} \right)\)

25 tháng 5 2017

Đường thẳng và mặt phẳng trong không gian, Quan hệ song song

Đường thẳng và mặt phẳng trong không gian, Quan hệ song song

24 tháng 5 2017

Đường thẳng và mặt phẳng trong không gian, Quan hệ song song

C

20 tháng 8 2019

  Đề kiểm tra 15 phút Hình học 11 Chương 3 có đáp án (Đề 3)

- Theo giả thiết:

   Đề kiểm tra 15 phút Hình học 11 Chương 3 có đáp án (Đề 3)

Ta có:

   Đề kiểm tra 15 phút Hình học 11 Chương 3 có đáp án (Đề 3)