K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 11 2021

Bài 2:

\(b,=\left(x+y\right)^2+2\left(2x-y\right)\left(x+y\right)+\left(2x-y\right)^2-4x^2+4xy-y^2-x^2+y^2\\ =\left(x+y+2x-y\right)^2-5x^2+4xy\\ =9x^2-4x^2+4xy=5x^2+4xy=x\left(5x+4y\right)\)

16 tháng 11 2021

Bài 3:

\(b,\Leftrightarrow\left(x+8\right)\left(x+8-3x\right)=0\\ \Leftrightarrow\left(x+8\right)\left(8-2x\right)=0\\ \Leftrightarrow2\left(4-x\right)\left(x+8\right)=0\Leftrightarrow\left[{}\begin{matrix}x=4\\x=-8\end{matrix}\right.\)

6 tháng 6 2021

`3)(x+4)/(x-3)-(x-3)/(x+4)=(x^2+18x+7)/(x^2+x-12)`

`đk:x ne 3,x ne -4`

Nhân 2 vế với `(x-3)(x+4) ne 0` ta có:

`(x+4)^2-(x-3)^2=x^2+18x+7`

`<=>x^2+8x+16-x^2+6x-9=x^2+18x+7`

`<=>14x+7=x^2+18x+7`

`<=>x^2+4x=0`

`<=>x(x+4)=0`

Vì `x ne -4=>x+4 ne 0`

`<=>x=0`

Vậy `S={0}`

6 tháng 6 2021

Em cảm ơn

Tiện thì giúp em luôn bài này đc ko ạundefined 4 ấy

21 tháng 11 2021

undefined

20 tháng 10 2021

\(1,=x\left(x^2-2x+1\right)=x\left(x-1\right)^2\\ 2,=6\left(x^2+2xy+y^2\right)=6\left(x+y\right)^2\\ 3,=2y\left(y^2+4y+4\right)=2y\left(y+2\right)^2\\ 4,=2\left(x^2+2x+1-y^2\right)=2\left[\left(x+1\right)^2-y^2\right]\\ =2\left(x+y+1\right)\left(x-y+1\right)\\ 5,=16-\left(x-y\right)^2=\left(4-x+y\right)\left(4+x-y\right)\)

21 tháng 10 2021

2) \(=6\left(x^2+2xy+y^2\right)=6\left(x+y\right)^2\)

3) \(=2y\left(y^2+4y+4\right)=2y\left(y+2\right)^2\)

4) \(=2\left[\left(x^2+2x+1\right)-y^2\right]=2\left[\left(x+1\right)^2-y^2\right]\)

\(=2\left(x+1-y\right)\left(x+1+y\right)\)

5) \(=16-\left(x^2-2xy+y^2\right)=16-\left(x-y\right)^2\)

\(=\left(4-x+y\right)\left(4+x-y\right)\)

20 tháng 3 2023

dấu <=> đầu tiên = x2-2x+2x-4

20 tháng 3 2023

phần quy đồng bn sai á

6 tháng 7 2016

a < b

=> 2a < 2b (Nhân 2 vào 2 vế của BPT)

=> -2a > -2b (Nhân -1 vào 2 vế của BPT)

=> -2a + (-5) > -2b + (-5) (Cộng -5 vào 2 vế của BPT)

=> -2a - 5 > -2b - 5 (Đpcm).

6 tháng 7 2016

cảm ơn rất nhiều ạ

20 tháng 7 2023

a, \(25+10x+x^2=5^2+2.5x+x^2=\left(5+x\right)^2\)
b, \(8x^3-\dfrac{1}{8}=\left(2x\right)^3-\left(\dfrac{1}{2}\right)^3=\left(2x-\dfrac{1}{2}\right)\left[\left(2x\right)^2+2x.\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2\right]=\left(2x-\dfrac{1}{2}\right)\left(4x^2+x+\dfrac{1}{4}\right)\)
c, \(x^2-10x+25=x^2-2.5x+5^2=\left(x-5\right)^2\)

20 tháng 7 2023

1. \(25+10x+x^2\\ \Leftrightarrow5^2+2\cdot5\cdot x+x^2\\ \Leftrightarrow\left(5+x\right)^2\\ \Leftrightarrow\left(5+x\right)\left(5+x\right)\)

 

2. \(8x^3-\dfrac{1}{8}\\ \Leftrightarrow\left(2x\right)^3-\left(\dfrac{1}{2}\right)^3\\ \Leftrightarrow\left(2x-\dfrac{1}{2}\right)\left[\left(2x\right)^2+2x\cdot\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2\right]\\ \Leftrightarrow\left(2x-\dfrac{1}{2}\right)\left[4x^2+x+\dfrac{1}{4}\right]\)

3. \(x^2-10x+25\\ \Leftrightarrow x^2-2\cdot5\cdot x+5^2\\ \Leftrightarrow\left(x-5\right)^2\\ \Leftrightarrow\left(x-5\right)\left(x-5\right)\)