K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 5 2016

Đặt S1=a1

​S2=a2

.....

​S10=a10

​+,Nếu trong 10 Tổng trên chia hết cho 10 thì ta có đpcm

​+, Nếu không có Tổng nào chia hết cho 10 thì luôn tồn tại 2 Tổng chia cho 10 có cùng số dư khi chia cho 10

​=>Hiệu của 2 Tổng đó chia hết cho 10 ( đó là Tổng của 1 hay 1 số số trong dãy) - đpcm

26 tháng 5 2016

Trả lời câu hỏi của Nhóm BGS

Đặt B= a1

B2= a+ a2

...

B10= a1 +a+...+a10

Giả sử trong dãy B1 đến B10 không có số nào chia hết cho 10. Nên trong phép chia B1  (1 bé hơn hoặc bằng a bé hơn hoặc bằng 10) có 9 số dư từ 1 đến 9\

-> có 2 số chia cho 10 có cùng số dư nên hiệu hai số này chia hết cho 10\

Gọi hai số đó là Bm và B(1bé hơn hoặc bằng m bé hơn hoặc bằng n bé hơn hoặc bằng 10)

Bn - Bm chia hết cho 10

a1 + a2 +...+ a10 - (a1 + a+...+ am) chia hết cho 10

am+1 +am+2 +...+ an chia hết cho 10

Vậy có một tổng các số liên tiếp trong dãy trên chia hết cho 10

Hoàn thành!!!

12 tháng 5 2017

Gọi số tự nhiên đầu là a

Ta có 10 số đó sẽ là:

a;A+1;A+2;A+3;a+4;...;a+10

vì khi chia a cho 10 thì sẽ dư từ 0 đến 9, Nên

Nếu cộng a cho một đại lượng từ 0 đến 9 sẽ chia hết cho 10

19 tháng 9 2015

Mink giải câu a thôi được khoonng?

26 tháng 6 2015

c)

gọi 2 số chẳn liên tiếp là 2k ;2k+2 (k thuộc N)

ta có \(2k.\left(2k+2\right)=2k.2k+2k.2\)

                                       \(=2.2.k.k+4k\)

                                       \(=4k^2+4k\)

mà \(4k^2+4k\) chia hết cho 4

=>\(2k.\left(2k+2\right)\) chia hết cho 4

20 tháng 9 2015

a)Goi 2 so tu nhien lien tiep la a;a+1

Neu a la so chan:a.(a+1) la so chan hay a.(a+1) chia het cho 2

Neu a la so le:a+1 la so le

Vay tich2 so tu nhien lien tiep chia het cho 2

15 tháng 12 2015

Gọi x là số nhóm chia được nhiều nhất là x và x là ƯCLN(20,16), ta tính được là 4.

Vậy có thể chia được nhiều nhất thành 4 nhóm.

Khi đó:

Số nam trong mỗi nhóm:

20:4=5(nam)

Số nữ trong mỗi nhóm

16:4=4(nữ)

Vậy mỗi nhóm có 5 nam, 4 nữ

16 tháng 3 2022

12457809

18 tháng 7 2016

a) Gọi 2 số tự nhiên liên tiếp đó là n ; n + 1 ( \(n\in N\))

Nếu m chia hết cho 2 thì ta có điều cần chứng minh

Nếu n = 2k + 1 thì n + 1 = 2k + 2 chia hết cho 2

b) Gọi 2 số tự nhiên liên tiếp đó là n ; n + 1 ( \(n\in N\))

Ta có: n + ( n + 1 ) + ( n + 2 ) = 3n + 3 chia hết cho 3

=> ĐPCM

17 tháng 8 2017

a)A=5050

b)A=5000050000