\(\frac{5}{12.17}+\frac{35}{17.18}-\frac{39}{18.21}+\frac{15}{21.36}\)

giúp mk nh...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 5 2016

đáp án bằng:1/18 đó nhớ ks nhiều vào nhé

25 tháng 4 2017

A=\(\frac{1}{8}\)

25 tháng 4 2017

BẤM MÁY THÌ RA THÔI!

ĐÁP ÁN LÀ \(\frac{1}{18}\)

28 tháng 4 2018

Các bạn ơi, giúp mk đi mà!

17 tháng 5 2017

Sửa đề nha :

\(\frac{1}{1\cdot3}+\frac{1}{3\cdot5}+\frac{1}{5\cdot7}+...+\frac{1}{2015\cdot2017}\)

\(=\frac{1}{2}\cdot\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2015}-\frac{1}{2017}\right)\)

\(=\frac{1}{2}\cdot\left(1-\frac{1}{2017}\right)\)

\(=\frac{1}{2}\cdot\frac{2016}{2017}=\frac{1008}{2017}\)

17 tháng 5 2017

\(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{2016.2017}\)

\(=\frac{1}{2}\left[\left[\frac{1}{1}-\frac{1}{3}\right]+\left[\frac{1}{3}-\frac{1}{5}\right]+...+\left[\frac{1}{2016}-\frac{1}{2017}\right]\right]\)

\(=\frac{1}{2}\left[1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2016}-\frac{1}{2017}\right]\)

\(=\frac{1}{2}.\left[1-\frac{1}{2017}\right]\)

= 1/2. 2016 / 2017 = 1008/2017

AI THẤY ĐÚNG  ỦNG HỘ   NHA

31 tháng 1 2018

a) Gọi d là ƯCLN(n, n + 1), d ∈ N*

\(\Rightarrow\hept{\begin{cases}n⋮d\\n+1⋮d\end{cases}}\)

\(\Rightarrow\left(n+1\right)-n⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\)

\(\RightarrowƯCLN\left(n,n+1\right)=1\)

\(\Rightarrow\) \(\frac{n}{n+1}\) là phân số tối giản.

b) Gọi d là ƯCLN(n + 1, 2n + 3), d ∈ N*

\(\Rightarrow\hept{\begin{cases}n+1⋮d\\2n+3⋮d\end{cases}\Rightarrow\hept{\begin{cases}2\left(n+1\right)⋮d\\2n+3⋮d\end{cases}\Rightarrow}\hept{\begin{cases}2n+2⋮d\\2n+3⋮d\end{cases}}}\)

\(\Rightarrow\left(2n+3\right)-\left(2n+2\right)⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\)

\(\RightarrowƯCLN\left(n+1,2n+3\right)=1\)

\(\Rightarrow\) \(\frac{n+1}{2n+3}\) là phân số tối giản.

31 tháng 1 2018

c) Gọi d là ƯCLN(21n + 4, 14n + 3), d ∈ N*

\(\Rightarrow\hept{\begin{cases}21n+4⋮d\\14n+3⋮d\end{cases}\Rightarrow\hept{\begin{cases}2\left(21n+4\right)⋮d\\3\left(14n+3\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}42n+8⋮d\\42n+9⋮d\end{cases}}}\)

\(\Rightarrow\left(42n+9\right)-\left(42n+8\right)⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\)

\(\RightarrowƯCLN\left(21n+4,14n+3\right)=1\)

\(\Rightarrow\) \(\frac{21n+4}{14n+3}\) là phân số tối giản.

d) Gọi d là ƯCLN(2n + 3, 3n + 5), d ∈ N*

\(\Rightarrow\hept{\begin{cases}2n+3⋮d\\3n+5⋮d\end{cases}\Rightarrow\hept{\begin{cases}3\left(2n+3\right)⋮d\\2\left(3n+5\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}6n+9⋮d\\6n+10⋮d\end{cases}}}\)

\(\Rightarrow\left(6n+10\right)-\left(6n+9\right)⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\)

\(\RightarrowƯCLN\left(2n+3,3n+5\right)=1\)

\(\Rightarrow\) \(\frac{2n+3}{3n+5}\) là phân số tối giản.

16 tháng 9 2016

\(\frac{2015-\frac{2015}{2016}+\frac{2015}{2017}}{5-\frac{5}{2016}+\frac{5}{2017}}=\frac{2015\left(1-\frac{1}{2016}+\frac{1}{2017}\right)}{5\left(1-\frac{1}{2016}+\frac{1}{20177}\right)}=\frac{2015}{5}=403\)

16 tháng 9 2016

làm ơn trả lời giúp mk nha mk cần gấp lắm mai mk phải nộp rồi