K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
29 tháng 5 2020

\(A=cos^2a+cos^2b+2cosa.cosb+sin^2a+sin^2b+2sina.sinb\)

\(=2+2\left(cosa.cosb+sina.sinb\right)\)

\(=2+2.cos\left(a-b\right)=2+2.cos\frac{\pi}{3}=3\)

\(B=cos^2a+sin^2b+2cosa.sinb+cos^2b+sin^2a-2sina.cosb\)

\(=2-2\left(sina.cosb-cosa.sinb\right)\)

\(=2-2sin\left(a-b\right)=2-2sin\frac{\pi}{3}=2-\sqrt{3}\)

NV
20 tháng 7 2020

1.

Ý tưởng thế này: nhìn vế trái phần đáp án có \(tan\left(a+b\right)\) nên cần biến đổi giả thiết xuất hiện \(sin\left(a+b\right)\) , vậy ta làm như sau:

\(sina.cos\left(a+b\right)=sin\left(a+b-a\right)\)

\(\Leftrightarrow sina.cos\left(a+b\right)=sin\left(a+b\right).cosa-cos\left(a+b\right).sina\)

\(\Leftrightarrow2sina.cos\left(a+b\right)=sin\left(a+b\right).cosa\)

\(\Rightarrow2tana=tan\left(a+b\right)\)

2.

Đây là 1 dạng cơ bản, nhìn vào lập tức cần ghép x với 3x (đơn giản vì \(\frac{x+3x}{2}=2x\))

\(A=\frac{sin3x-sinx+cos2x}{cosx-cos3x+sin2x}=\frac{2cos2x.sinx+cos2x}{2sin2x.sinx+sin2x}=\frac{cos2x\left(2sinx+1\right)}{sin2x\left(2sinx+1\right)}\)

\(=\frac{cos2x}{sin2x}=cot2x\)

NV
13 tháng 4 2019

\(K=\frac{2sin\left(\frac{a+b}{2}\right).cos\left(\frac{a+b}{2}\right)+2sin\left(\frac{a+b}{2}\right).cos\left(\frac{a-b}{2}\right)}{2cos^2\left(\frac{a+b}{2}\right)-1+2cos\left(\frac{a+b}{2}\right).cos\left(\frac{a-b}{2}\right)+1}\)

\(K=\frac{sin\left(\frac{a+b}{2}\right)\left[cos\left(\frac{a+b}{2}\right)+cos\left(\frac{a-b}{2}\right)\right]}{cos\left(\frac{a+b}{2}\right)\left[cos\left(\frac{a+b}{2}\right)+cos\left(\frac{a-b}{2}\right)\right]}\)

\(K=\frac{sin\left(\frac{a+b}{2}\right)}{cos\left(\frac{a+b}{2}\right)}=tan\left(\frac{a+b}{2}\right)\)

23 tháng 4 2022

nhường cho I don't know :))

23 tháng 4 2022

Nó bt đếch gì mà nhường :) ?

10 tháng 5 2017

a) \(sin6\alpha cot3\alpha cos6\alpha=2.sin3\alpha.cos3\alpha\dfrac{cos3\alpha}{sin3\alpha}-cos6\alpha\)
\(=2cos^23\alpha-\left(2cos^23\alpha-1\right)=1\) (Không phụ thuộc vào x).

10 tháng 5 2017

b) \(\left[tan\left(90^o-\alpha\right)-cot\left(90^o+\alpha\right)\right]^2\)\(-\left[cot\left(180^o+\alpha\right)+cot\left(270^o+\alpha\right)\right]^2\)
\(=\left[cot\alpha+cot\left(90^o-\alpha\right)\right]^2\)\(-\left[cot\alpha+cot\left(90^o+\alpha\right)\right]^2\)
\(=\left[cot\alpha+tan\alpha\right]^2-\left[cot\alpha-tan\alpha\right]^2\)
\(=4tan\alpha cot\alpha=4\). (Không phụ thuộc vào \(\alpha\)).

19 tháng 8 2021

a, \(\dfrac{1-sin2a}{1+sin2a}\)

\(=\dfrac{sin^2a+cos^2a-2sina.cosa}{sin^2a+cos^2a+2sina.cosa}\)

\(=\dfrac{\left(sina-cosa\right)^2}{\left(sina+cosa\right)^2}\)

\(=\dfrac{2sin^2\left(a-\dfrac{\pi}{4}\right)}{2sin^2\left(a+\dfrac{\pi}{4}\right)}\)

\(=\dfrac{sin^2\left(\dfrac{\pi}{4}-a\right)}{sin^2\left(a+\dfrac{\pi}{4}\right)}\)

\(=\dfrac{cos^2\left(\dfrac{\pi}{4}+a\right)}{sin^2\left(\dfrac{\pi}{4}+a\right)}=cot\left(\dfrac{\pi}{4}+a\right)\)

19 tháng 8 2021

b, \(\dfrac{sina+sinb.cos\left(a+b\right)}{cosa-sinb.sin\left(a+b\right)}\)

\(=\dfrac{sina+sinb.cosa.cosb-sinb.sina.sinb}{cosa-sinb.sina.cosb-sinb.cosa.sinb}\)

\(=\dfrac{sina.\left(1-sin^2b\right)+sinb.cosa.cosb}{cosa.\left(1-sin^2b\right)-sinb.sina.cosb}\)

\(=\dfrac{sina.cos^2b+sinb.cosa.cosb}{cosa.cos^2b-sinb.sina.cosb}\)

\(=\dfrac{\left(sina.cosb+sinb.cosa\right).cosb}{\left(cosa.cosb-sinb.sina\right).cosb}\)

\(=\dfrac{sin\left(a+b\right)}{cos\left(a+b\right)}=tan\left(a+b\right)\)