K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(C=\dfrac{1}{x+2}-\dfrac{x\left(x-2\right)\left(x+2\right)}{x^2+4}\cdot\left(\dfrac{1}{\left(x+2\right)^2}+\dfrac{1}{\left(x-2\right)\left(x+2\right)}\right)\)

\(=\dfrac{1}{x+2}-\dfrac{x\left(x-2\right)\left(x+2\right)}{x^2+4}\cdot\dfrac{x-2+x+2}{\left(x-2\right)\left(x+2\right)^2}\)

\(=\dfrac{1}{x+2}-\dfrac{x}{x^2+4}\cdot\dfrac{2x}{x+2}\)

\(=\dfrac{x^2+4-2x^2}{\left(x+2\right)\left(x^2+4\right)}\)

\(=\dfrac{4-x^2}{\left(x+2\right)\cdot\left(x^2+4\right)}=\dfrac{2-x}{x^2+4}\)

b: Để C=1 thì \(x^2+4=2-x\)

\(\Leftrightarrow x^2+x+2=0\)

hay \(x\in\varnothing\)

a: \(A=\dfrac{-\left(x+2\right)^2-2x\left(x-2\right)-4x^2}{\left(x-2\right)\left(x+2\right)}\cdot\dfrac{-\left(x-2\right)\left(x-3\right)}{\left(x-3\right)^2}\)

\(=\dfrac{-x^2-4x-4-2x^2+4x-4x^2}{\left(x+2\right)}\cdot\dfrac{-1}{x-3}\)

\(=\dfrac{-7x^2-4}{\left(x+2\right)}\cdot\dfrac{-1}{x-3}=\dfrac{7x^2+4}{\left(x+2\right)\left(x-3\right)}\)

b: Khi x=1/3 thì \(A=\dfrac{7\cdot\dfrac{1}{9}+4}{\left(\dfrac{1}{3}-2\right)\left(\dfrac{1}{3}-3\right)}=\dfrac{43}{40}\)

ĐKXĐ: \(x\notin\left\{-1;2;-2\right\}\)

a) Ta có: \(A=\left(\dfrac{\left(x+1\right)^2}{\left(x+1\right)^2-3x}-\dfrac{2x^2+4x-1}{x^3+1}-\dfrac{1}{x+1}\right):\dfrac{x^2-4}{3x^2+6x}\)

\(=\left(\dfrac{\left(x+1\right)^2}{x^2-x+1}-\dfrac{2x^2+4x-1}{\left(x+1\right)\left(x^2-x+1\right)}-\dfrac{1}{x+1}\right):\dfrac{x^2-4}{3x^2+6x}\)

\(=\left(\dfrac{x^3+3x^2+3x+1}{\left(x+1\right)\left(x^2-x+1\right)}-\dfrac{2x^2+4x-1}{\left(x+1\right)\left(x^2-x+1\right)}-\dfrac{x^2-x+1}{\left(x+1\right)\left(x^2-x+1\right)}\right):\dfrac{\left(x-2\right)\left(x+2\right)}{3x\left(x+2\right)}\)

\(=\dfrac{x^3+3x^2+3x+1-2x^2-4x+1-x^2+x-1}{\left(x+1\right)\left(x^2-x+1\right)}:\dfrac{x-2}{3x}\)

\(=\dfrac{x^3+1}{\left(x+1\right)\left(x^2-x+1\right)}\cdot\dfrac{3x}{x-2}\)

\(=\dfrac{3x}{x-2}\)

b) Để A nguyên thì \(3x⋮x-2\)

\(\Leftrightarrow3x-6+6⋮x-2\)

mà \(3x-6⋮x-2\)

nên \(6⋮x-2\)

\(\Leftrightarrow x-2\inƯ\left(6\right)\)

\(\Leftrightarrow x-2\in\left\{1;-1;2;-2;3;-3;6;-6\right\}\)

hay \(x\in\left\{3;1;4;0;5;-1;8;-4\right\}\)

Kết hợp ĐKXĐ, ta được:

\(x\in\left\{3;1;4;0;5;8;-4\right\}\)

Vậy: Để A nguyên thì \(x\in\left\{3;1;4;0;5;8;-4\right\}\)

NV
17 tháng 4 2022

ĐKXĐ: \(x\ne\pm1\)

\(A=\left(\dfrac{\left(1+x\right)^2}{\left(1-x\right)\left(1+x\right)}-\dfrac{\left(1-x\right)^2}{\left(1-x\right)\left(1+x\right)}+\dfrac{4x^2}{\left(1-x\right)\left(1+x\right)}\right):\dfrac{4\left(x-1\right)\left(x+1\right)}{\left(x-1\right)^2}\)

\(=\left(\dfrac{x^2+2x+1-\left(x^2-2x+1\right)+4x^2}{\left(1-x\right)\left(1+x\right)}\right):\dfrac{4\left(x+1\right)}{x-1}\)

\(=\left(\dfrac{4x^2+4x}{\left(1-x\right)\left(1+x\right)}\right):\dfrac{4\left(x+1\right)}{x-1}\)

\(=\dfrac{4x\left(x+1\right)}{\left(1-x\right)\left(1+x\right)}.\dfrac{\left(x-1\right)}{4\left(x+1\right)}=-\dfrac{x}{x+1}\)

14 tháng 12 2021

\(a,=\dfrac{\left(x-2\right)^2-\left(x+2\right)^2}{\left(x-2\right)^2\left(x+2\right)^2}:\dfrac{x-2+x+2}{\left(x-2\right)\left(x+2\right)}\\ =\dfrac{-8x}{\left(x-2\right)^2\left(x+2\right)^2}\cdot\dfrac{\left(x-2\right)\left(x+2\right)}{2x}=\dfrac{-4}{\left(x-2\right)\left(x+2\right)}\)

\(b,=\dfrac{5x^2+26xy+5y^2+5x^2-26xy+5y^2}{x\left(x-5y\right)\left(x+5y\right)}\cdot\dfrac{\left(x-5y\right)\left(x+5y\right)}{x^2+y^2}\\ =\dfrac{10\left(x^2+y^2\right)}{x\left(x^2+y^2\right)}=\dfrac{10}{x}\)

23 tháng 12 2021

\(A=\left(\dfrac{x-1}{x\left(x-2\right)}+\dfrac{x+1}{x\left(x+2\right)}-\dfrac{4}{x\left(x-2\right)\left(x+2\right)}\right)\cdot\dfrac{x\left(x-3\right)}{2\left(x+2\right)}\)

\(=\dfrac{x^2+x-2+x^2-x+2-4}{x\left(x-2\right)\left(x+2\right)}\cdot\dfrac{x\left(x-3\right)}{2\left(x+2\right)}\)

\(=\dfrac{2x^2-4}{x\left(x-2\right)\left(x+2\right)}\cdot\dfrac{x\left(x-3\right)}{2\left(x+2\right)}\)

\(=\dfrac{2x\left(x^2-2\right)\left(x-3\right)}{2x\left(x-2\right)\cdot\left(x+2\right)^2}=\dfrac{\left(x^2-2\right)\left(x-3\right)}{\left(x-2\right)\left(x+2\right)^2}\)

a: \(\left(\dfrac{1}{\left(2x-y\right)^2}+\dfrac{2}{\left(2x-y\right)\left(2x+y\right)}+\dfrac{1}{\left(2x+y\right)^2}\right)\cdot\dfrac{\left(2x+y\right)^2}{16x}\)

\(=\dfrac{4x^2+4xy+y^2+2\left(4x^2-y^2\right)+4x^2-4xy+y^2}{\left(2x-y\right)^2\cdot\left(2x+y\right)^2}\cdot\dfrac{\left(2x+y\right)^2}{16x}\)

\(=\dfrac{8x^2+2y^2+8x^2-2y^2}{\left(2x-y\right)^2}\cdot\dfrac{1}{16x}\)

\(=\dfrac{16x^2}{16x}\cdot\dfrac{1}{\left(2x-y\right)^2}=\dfrac{x}{\left(2x-y\right)^2}\)

b: \(\left(\dfrac{2}{x+2}-\dfrac{4}{x^2+4x+4}\right):\left(\dfrac{2}{x^2-4}+\dfrac{1}{2-x}\right)\)

\(=\dfrac{2x+4-4}{\left(x+2\right)^2}:\left(\dfrac{2}{\left(x-2\right)\left(x+2\right)}-\dfrac{1}{x-2}\right)\)

\(=\dfrac{2x}{\left(x+2\right)^2}:\dfrac{2-x-2}{\left(x-2\right)\left(x+2\right)}\)

\(=\dfrac{2x}{\left(x+2\right)^2}\cdot\dfrac{\left(x-2\right)\left(x+2\right)}{-x}=\dfrac{-2\left(x-2\right)}{x+2}\)

21 tháng 6 2022

câu này post hồi học lớp 8 = )) giờ tốt nghiệp c3 thì có người trả lời :'))

khbiet nên cười hay khóc đây