Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét ΔBEM vuông tại E và ΔCFM vuông tại F có
MB=MC(M là trung điểm của BC)
\(\widehat{BME}=\widehat{CMF}\)(hai góc đối đỉnh)
Do đó: ΔBEM=ΔCFM(cạnh huyền-góc nhọn)
b) Ta có: ΔBEM=ΔCFM(cmt)
nên BE=CF(hai cạnh tương ứng)
c) Xét ΔBMF và ΔCME có
MB=MC(M là trung điểm của BC)
\(\widehat{BMF}=\widehat{CME}\)(hai góc đối đỉnh)
MF=ME(ΔCFM=ΔBEM)
Do đó: ΔBMF=ΔCME(c-g-c)
⇒\(\widehat{BFM}=\widehat{CEM}\)(hai góc tương ứng)
mà \(\widehat{BFM}\) và \(\widehat{CEM}\) là hai góc ở vị trí so le trong
nên BF//CE(Dấu hiệu nhận biết hai đường thẳng song song)
c, xét tam giác BEM và tam giác AFM có:
BE=AF(câu b)
BM=AM(do AM là trung tuyến của tam giác cân)
góc EBM =góc MAF(cùng phụ với góc ADM= góc BDE)
suy ra 2 tam giác trên bằng nhau
suy ra góc EMB= góc AMF( 2 góc tương ứng)
mặt khác: góc AMF+góc FMB=90 độ (câu a)
suy ra góc EMB+ góc FMB=90 độ
hay FM vuông góc với ME
hay tam giác EMF vuông tại M
chị làm đó rồi nhé
a: Xét ΔBEM vuông tại E và ΔCFM vuông tại F có
MB=MC
góc BME=góc CMF
=>ΔBEM=ΔCFM
=>BE=CF và ME=MF
b: Xét ΔBMF và ΔCME có
MB=MC
góc BMF=góc CME
MF=ME
=>ΔBMF=ΔCME
c: ΔBMF=ΔCME
=>góc MBF=góc MCE
=>BF//CE