Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)BC2 =AB2+AC2 ( định lí Pitago)
=> BC=10
Dựa vào t/c đường phân giác ta có
AB/AD=BC/DC=AB+BC/ AD+DC= 16/8=2
=> AD= 3; DC=5
=>AD/DC= 3/5
b)có GÓC A =GOC E= 90 ĐỘ
VÀ GÓC ABD =GÓC EBC (VÌ BD LA BD GÓC ABC)
=>TG ABD đồng dạng tam giác EBC(gg)
c) d) cũng khá dễ nên bạn tự làm nha (gợi ý kết hợp b,c để gải d)
a. Gọi giao điểm của AK và BN là Q
Ta có:
ˆDMB+ˆMBD=90∘DMB^+MBD^=90∘
Mà ˆAME+ˆMAE=90∘AME^+MAE^=90∘
ˆAME=ˆDMBAME^=DMB^ (2 góc đối đỉnh)
⇒ˆMBD=ˆMAE⇒ˆQAM=ˆMBD⇒MBD^=MAE^⇒QAM^=MBD^
Mà ˆAMN=ˆDMBAMN^=DMB^ (2 góc đối đỉnh)
⇒ˆAMN+ˆQAM=ˆDMB+ˆMBD=90∘⇒AMN^+QAM^=DMB^+MBD^=90∘
⇒ˆAQM=90∘⇒AQM^=90∘
Hay AK vuông góc với BN.
b. Theo câu a: AK vuông góc với BN tại Q
Mà BQ là phân giác của góc ˆIBKIBK^
Khi đó: tam giác IBK có đường cao là đường phân giác nên tam giác IBK cân tại B
Vậy BQ cũng là trung tuyến hay Q là trung điểm của IK.
Chứng minh tương tự: Q là trung điểm của MN
Xét tứ giác MINK có 2 đường chéo giao nhau tại trung điểm mỗi đường, MN vuông góc với IK
Vậy MINK là hình thoi.
a) BC = \(\sqrt{AB^2+AC^2}\)= \(\sqrt{6^2+8^2}\)= \(\sqrt{100}\)= 10 (theo định lí Pythagoras)
\(\Delta\)ABC có BD là phân giác => \(\frac{AD}{AB}\)= \(\frac{CD}{BC}\)= \(\frac{AD}{DC}\)= \(\frac{AB}{BC}\)= \(\frac{6}{10}\)= \(\frac{3}{5}\).
b) Ta có : \(\widehat{ABE}\)= \(\widehat{EBC}\)(BD là phân giác)
=> \(\Delta ABD\)~ \(\Delta EBC\)(gg)
=> \(\frac{BD}{BC}\)= \(\frac{AD}{EC}\)<=> BD.EC = AD.BC (đpcm).
c) Ta có : \(\Delta CHE\)~ \(\Delta CEB\)( 2 tam giác vuông có chung góc C )
=> \(\frac{CH}{CE}\)= \(\frac{CE}{CB}\)<=> CH.CB = CE2 (1)
\(\Delta CDE\)~ \(\Delta BDA\)(gg (2 góc đối đỉnh))
\(\Delta BDA~\Delta BCE\) (câu b))
=> \(\Delta CDE~\Delta BCE\)
=> \(\frac{CE}{BE}\)= \(\frac{DE}{CE}\)<=> BE.DE = CE2 (2)
Từ (1) và (2) => CH.CB = ED.EB (đpcm).
a)Ta có : \(\widehat{A_1}+\widehat{M_1}=90^o;\widehat{M_1}+\widehat{BMC}=90^o\)\(\Rightarrow\widehat{A_1}=\widehat{BMC}\)
Xét \(\Delta ADM\)và \(\Delta BMC\)có : \(\widehat{A_1}=\widehat{BMC}\); \(\widehat{ADM}=\widehat{BCM}\)
\(\Rightarrow\Delta DAM\approx\Delta CMB\left(g.g\right)\)\(\Rightarrow\frac{AD}{DM}=\frac{CM}{BC}\)hay CM = \(\frac{5}{2}.5=12,5\)
b) \(\Delta AMB\)có EK là tia phân giác nên \(\frac{EA}{EB}=\frac{MA}{MB}\)( 1 )
Mặt khác : \(\widehat{B_1}+\widehat{EKB}=90^o;\widehat{B_1}+\widehat{A_2}=90^o\)nên \(\widehat{A_2}=\widehat{EKB}\)
\(\Delta BEK\approx\Delta BMA\left(g.g\right)\)\(\Rightarrow\frac{EK}{EB}=\frac{MA}{MB}\)( 2 )
Từ ( 1 ) và ( 2 ) suy ra EA = EK
c) Ta có : \(\widehat{BMH}=90^o\)nên \(BM\perp AH\)
Xét \(\Delta AHB\)có \(BM\perp AH\); \(HE\perp AB\)nên K là trực tâm \(\Rightarrow AN\perp BH\)
\(\Rightarrow\widehat{ANH}=90^o\)
xét \(\Delta AHN\)và \(\Delta BMH\)có : \(\widehat{ANH}=\widehat{BMH}=90^o;\widehat{MHN}\left(chung\right)\)
\(\Rightarrow\)\(\Delta AHN\approx\Delta BHM\left(g.g\right)\)\(\Rightarrow\)\(\frac{MH}{BH}=\frac{HN}{AH}\)hay \(\frac{MH}{HN}=\frac{BH}{AH}\)
Xét \(\Delta MHN\)và \(\Delta AHB\)có : \(\widehat{MHN}\left(chung\right);\frac{MH}{HN}=\frac{BH}{AH}\)
\(\Rightarrow\)\(\Delta HMN\approx\Delta HBA\left(g.g\right)\) \(\Rightarrow\)\(\widehat{HMN}=\widehat{HBA}\)
Mà EA = EK nên \(\widehat{A_2}=45^o\) \(\Rightarrow\widehat{ABH}=90^o-\widehat{A_2}=45^o\)hay \(\widehat{HMN}=45^o\)
Ta có : \(\widehat{EMN}=180^o-\widehat{AME}-\widehat{HMN}=180^o-45^o-45^o=90^o\)
\(\Rightarrow EM\perp MN\)
Mặt khác : ME là tia phân giác \(\widehat{AMB}\) nên MN là tia phân giác \(\widehat{BMH}\)
muon co diem hoi dap thi lam sao
chi di k cho
bạn muốn có điểm hỏi đáp à