K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
4 tháng 6 2019

\(y'=4x^3+3ax^2+2bx\)

\(y'=0\Rightarrow x\left(4x^2+3ax+b\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\4x^2+3ax+b=0\end{matrix}\right.\)

Xét \(g\left(x\right)=4x^2+3ax+b=0\) với \(\Delta=9a^2-16b\)

Hàm số luôn có 1 cực trị là \(x=0\), với \(y\left(0\right)=1\)

Dựa vào hình dáng đồ thị hàm bậc 4, để \(y\) đạt GTNN bằng 1 cũng chính là \(y\left(0\right)\) ta có các trường hợp sau:

- TH1: \(\Delta\le0\Rightarrow9a^2-16b\le0\Rightarrow b\ge\frac{9a^2}{16}\)

Khi đó \(S=a+b\ge a+\frac{9a^2}{16}=\frac{9}{16}\left(a+\frac{8}{9}\right)^2-\frac{4}{9}\ge-\frac{4}{9}\)

- TH2: \(g\left(x\right)=0\) có 2 nghiệm cùng âm \(x_1< x_2< 0\)\(y\left(x_1\right)=1\)

\(\Rightarrow\left\{{}\begin{matrix}9a^2-16b>0\\\frac{b}{4}>0\\\frac{-3a}{4}< 0\\x_1^4+ax_1^3+bx_1^2+1=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}b< \frac{9}{16}a^2\\b>0\\a>0\\x_1^2+ax_1+b=0\end{matrix}\right.\)

Nói chung ta ko cần tìm tiếp, do \(a;b>0\Rightarrow a+b>0>-\frac{4}{9}\)

TH3: \(g\left(x\right)=0\) có 2 nghiệm cùng dương \(0< x_1< x_2\)\(y\left(x_2\right)=1\)

\(\left\{{}\begin{matrix}9a^2-16b>0\\\frac{b}{4}>0\\-\frac{3a}{4}>0\\y\left(x_2\right)=1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}b< \frac{9}{16}a^2\\b>0\\a< 0\end{matrix}\right.\)

\(y\left(x_2\right)=x_2^4+ax_2^3+bx_2^2+1=1\)

\(\Leftrightarrow x_2^2+ax_2+b=0\)

\(\Rightarrow\left\{{}\begin{matrix}4x_2^2+3ax_2+b=0\\x_2^2+ax_2+b=0\end{matrix}\right.\) \(\Rightarrow3x_2^2+2ax_2=0\Rightarrow x_2=-\frac{2a}{3}\)

\(\Rightarrow\frac{4a^2}{9}-\frac{2a^2}{3}+b=0\Rightarrow b=\frac{2a^2}{9}\)

\(\Rightarrow S=a+b=\frac{2a^2}{9}+a=\frac{2}{9}\left(a+\frac{9}{4}\right)^2-\frac{9}{8}\ge-\frac{9}{8}\)

So sánh 2 giá trị \(-\frac{4}{9}\)\(-\frac{9}{8}\) ta được \(S_{min}=-\frac{9}{8}\) khi \(\left\{{}\begin{matrix}a=-\frac{9}{4}\\b=\frac{9}{8}\end{matrix}\right.\)

28 tháng 5 2017

Đáp án D

Vậy min S=-1, khi a=-2, b=1

15 tháng 9 2019

Đáp án B

Dựa vào đồ thị hàm số 

28 tháng 4 2019

Đáp án B

22 tháng 3 2018

Chọn B

Xét f(x) =  x 4 - 38 x 2 + 120 x + 4 m  trên đoạn [0;2] ta có:

Dấu “=” xảy ra khi và chỉ khi 

Nhận xét: Với trắc nghiệm thì ta thử đáp án được đáp án B

23 tháng 3 2019

Chọn D

Xét  trên đoạn [0;2], ta có:

Vậy 

Cách 1:

Nếu 4m > 0 thì 

Nếu 4m + 104 < 0  ⇔ m < -126 thì 

Nếu  thì Vậy có 27 số nguyên thỏa mãn.

Cách 2:

Khi đó 

Có 27 số nguyên thoả mãn.

24 tháng 5 2017

Chọn đáp án D.

Xét  y = x 4 - 38 x 2 + 120 x + 4 m  trên đoạn  0 ; 2 ta có

Vậy

Có 27 số nguyên thoả mãn.

30 tháng 6 2017

Chọn C

Tập xác định của hàm số là ℝ .

Ta có: 

Vì trên khoảng  - 4 3 ; 0  hàm số đạt giá trị lớn nhất tại x = -1 nên hàm số đạt cực trị tại x = -1( cũng là điểm cực đại của hàm số) và a > 0.

Khi đó f'(x) = 0 ( đều là các nghiệm đơn)

Hàm số đạt cực đại tại x = -1 nên có bảng biến thiên:

=> x = - 3 2 là điểm cực tiểu duy nhất thuộc  - 2 ; - 5 4  

Vậy hàm số đạt giá trị nhỏ nhất tại x =  - 3 2  trên đoạn  - 2 ; - 5 4

24 tháng 1 2017

Tập xác định D = [-1;1].

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Chọn đáp án D

15 tháng 12 2018

Đặt  t= x4- 1( -1≤ t≤ 15).

Khi đó hàm số trở thành:  y= ( t+1) 2+ t2+ 5=2t2+ 2t+6

Đạo hàm y’ = 4t+ 2> 0 mọi x thòa mãn 0≤ x≤ 2

Hàm số đồng biến trên đoạn [0; 2].

 Hàm số đạt giá trị lớn nhất tại x= 2 tức là t= 15, hàm số đạt giá trị nhỏ nhất tại x= 0 hay t=1

Chọn D.