K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 3: 

a: \(x^2-7=\left(x-\sqrt{7}\right)\left(x+\sqrt{7}\right)\)

d: \(x^2-16=\left(x-4\right)\left(x+4\right)\)

e: \(x-81=\left(\sqrt{x}-9\right)\left(\sqrt{x}+9\right)\)

6 tháng 6 2021

A C B H

Đặt \(AB=a;AC=b\)

Xét \(\Delta ABC\) vuông tại A ta có :

Áp dụng hệ thức lượng trong \(\Delta\) vuông ta được :

\(\Leftrightarrow AH.BC=a.b\)

\(\Leftrightarrow ab=25.12=300\left(1\right)\)

Mặt khác: 

Xét \(\Delta ABC\) vuông tại A, theo định lý Pytago ta được:

\(\Leftrightarrow a^2+b^2=BC^2\)

\(\Leftrightarrow a^2+b^2=625\)

\(\Leftrightarrow\left(a+b\right)^2-2ab=625\)

Thay \(\text{ab=}300\) vào ta được :

\(\Leftrightarrow\left(a+b\right)^2-600=625\)

\(\Leftrightarrow\left(a+b\right)^2=1225\)

\(\Rightarrow a+b=35\left(2\right)\)

Từ \(\left(1\right)\) và \(\left(2\right)\) \(\Rightarrow\) Giải phương trình ta được: \(\left\{{}\begin{matrix}a=15\\b=20\end{matrix}\right.\)

\(\Rightarrow AB=15;AC=20\)

Xét \(\Delta AHC\) vuông tại H, theo định lý Pytago ta được:

\(HC=\sqrt{AC^2-AH^2}=16\)

 

6 tháng 6 2021

Ta có: \(AB.AC=AH.BC=12.25=300\left(1\right)\)

Lại có: \(AB^2+AC^2=BC^2=625\)

\(\Rightarrow\left(AB+AC\right)^2=AB^2+AC^2+2AB.AC=625+600=1225\)

\(\Rightarrow AB+AC=35\left(2\right)\)

Từ (1) và (2) \(\Rightarrow AB,AC\) là nghiệm của pt \(x^2-35x+300=0\)

\(\Rightarrow\left(x-20\right)\left(x-15\right)=0\) mà \(AB< AC\Rightarrow\left\{{}\begin{matrix}AB=15\\AC=20\end{matrix}\right.\)

Ta có: \(AC^2=CH.CB\Rightarrow CH=\dfrac{AC^2}{CB}=\dfrac{20^2}{25}=16\)

\(\Rightarrow D\)

\(\left(\sqrt{5-2\sqrt{6}}+\sqrt{2}\right)\cdot\dfrac{1}{\sqrt{3}}\)

\(=\sqrt{3}\cdot\dfrac{1}{\sqrt{3}}\)

=1

9 tháng 10 2021

Cho mình hỏi là sao ra được √3 vậy? Tại mình học yếu á. Nên mình không hiểu lắm.

17 tháng 1 2021

Câu 4b:

Ta có \(a-\sqrt{a}=\sqrt{b}-b\Leftrightarrow a+b=\sqrt{a}+\sqrt{b}\). (1)

Áp dụng bất đẳng thức Cauchy - Schwarz ta có:

\(a^2+b^2\ge\dfrac{\left(a+b\right)^2}{2};\sqrt{a}+\sqrt{b}\le\sqrt{2\left(a+b\right)}\).

Kết hợp với (1) ta có:

\(a+b\le\sqrt{2\left(a+b\right)}\Leftrightarrow0\le a+b\le2\).

Ta có: \(P\ge\dfrac{\left(a+b\right)^2}{2}+\dfrac{2020}{\left(\sqrt{a}+\sqrt{b}\right)^2}\) (Do \(a^2+b^2\ge\dfrac{\left(a+b\right)^2}{2}\))

\(=\dfrac{\left(a+b\right)^2}{2}+\dfrac{2020}{\left(a+b\right)^2}\) (Theo (1))

\(\Rightarrow P\ge\dfrac{\left(a+b\right)^2}{2}+\dfrac{2020}{\left(a+b\right)^2}\).

Áp dụng bất đẳng thức AM - GM cho hai số thực dương và kết hợp với \(a+b\le2\) ta có:

\(\dfrac{\left(a+b\right)^2}{2}+\dfrac{2020}{\left(a+b\right)^2}=\left[\dfrac{\left(a+b\right)^2}{2}+\dfrac{8}{\left(a+b\right)^2}\right]+\dfrac{2012}{\left(a+b\right)^2}\ge2\sqrt{\dfrac{\left(a+b\right)^2}{2}.\dfrac{8}{\left(a+b\right)^2}}+\dfrac{2012}{2^2}=4+503=507\)

\(\Rightarrow P\ge507\).

Đẳng thức xảy ra khi a = b = 1.

Vậy Min P = 507 khi a = b = 1.

 

17 tháng 1 2021

Giải nốt câu 4a:

ĐKXĐ: \(x\geq\frac{-1}{2}\).

Phương trình đã cho tương đương:

\(x^2+2x+1=2x+1+2\sqrt{2x+1}+1\)

\(\Leftrightarrow\left(x+1\right)^2=\left(\sqrt{2x+1}+1\right)^2\)

\(\Leftrightarrow\left(x+1\right)^2-\left(\sqrt{2x+1}+1\right)^2=0\)

\(\Leftrightarrow\left(x+1-\sqrt{2x+1}-1\right)\left(x+1+\sqrt{2x+1}+1\right)=0\)

\(\Leftrightarrow\left(x-\sqrt{2x+1}\right)\left(x+\sqrt{2x+1}+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-\sqrt{2x+1}=0\left(1\right)\\x+\sqrt{2x+1}+2=0\left(2\right)\end{matrix}\right.\).

Ta thấy \(x+\sqrt{2x+1}+2>0\forall x\ge-\dfrac{1}{2}\).

Do đó phương trình (2) vô nghiệm.

Xét phương trình (1) \(\Leftrightarrow x=\sqrt{2x+1}\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x^2=2x+1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\\left(x-1\right)^2=2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\\left[{}\begin{matrix}x-1=\sqrt{2}\\x-1=-\sqrt{2}\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\\left[{}\begin{matrix}x=\sqrt{2}+1>0>-\dfrac{1}{2}\left(TM\right)\\x=-\sqrt{2}+1< 0\left(\text{loại}\right)\end{matrix}\right.\end{matrix}\right.\).

Vậy nghiệm của phương trình là \(x=\sqrt{2}+1\).

c) Ta có: \(\left\{{}\begin{matrix}2x-6y=3\\\dfrac{2}{3}x-2y=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x-6y=3\\2x-6y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}0x=0\\2x-6y=3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}0x=0\\6y=2x-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}0x=0\\y=\dfrac{2x-3}{6}\end{matrix}\right.\)(luôn đúng)

Vậy: Hệ phương trình có vô số nghiệm theo dạng \(\left\{{}\begin{matrix}x\in R\\y=\dfrac{2x-3}{6}\end{matrix}\right.\)

24 tháng 2 2021

`2/3x-2y=1`

`<=>2x-6y=3`

Hoàn toàn trùng với phương trình trên

Vậy HPT có vô số nghiệm `x,y in RR`

10 tháng 11 2021

Kẻ AH⊥BC

ta có: \(VP=AB^2+BC^2-2.AB.BC.cosB=AB^2+BC^2-2.AB.BC.\dfrac{BH}{AB}=AB^2+BC^2-2.BH.BC=AB^2-BH^2+BC^2-2.BH.BC+BH^2=AH^2+\left(BC-BH\right)^2=AH^2+CH^2=AC^2=VT\)

3 tháng 4 2018

thảo à

4 tháng 4 2018

chưa đúng bạn nhé!

d: góc CEB=góc CAB=90 độ

=>CEAB nội tiếp

góc EAC=góc EBC

góc ECA=góc EBA

mà góc EBC=góc EBA

nên góc EAC=góc ECA

=>EA=EC

3 tháng 10 2021

Anh hoc lớp 1 hay lớp 9 vây anh ?

Câu này dể mà .

Toán lớp 1 luôn đó anh .

1 công 1 tức nhiên băng 2 rồi

30 tháng 11 2021

Trần Ngọc Anh Tú: Đúng rồi đó thôi xuông lớp  1 đi em chị dạy cho