Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho t/giác ABC cân tại A. Trên cạnh AB lấy điểm E. Trên tia đối của tia CA lấy điểm F sao cho CF=BE. Vẽ tia Bx vuông góc AB & Cy vuông góc AC. Gọi I là giao điểm của Bx và Cy
a, C/m t/giác IEF cân
b, Vẽ qua E đường thẳng song song với BC cắt AC tại D. C/m CD=CF
c, Gọi H là Giao điểm của EF và BC. C/m E, F đối xứng qua IH
Câu a ,b mình biết làm rồi còn câu c nữa thôi. SIN LOI MINH KO BIET LAM
a: Ta có: DB\(\perp\)AB
AC\(\perp\)AB
Do đó: DB//AC
Xét ΔECA có DB//AC
nên \(\dfrac{BE}{BA}=\dfrac{DE}{DC}\)
b: Xét ΔCEK có DB//EK
nên \(\dfrac{DB}{EK}=\dfrac{CD}{CE}\)(1)
Xét ΔAEI có DB//EI
nên \(\dfrac{DB}{EI}=\dfrac{AB}{AE}\left(2\right)\)
Ta có: \(\dfrac{BE}{BA}=\dfrac{DE}{DC}\)
=>\(\dfrac{BE+BA}{BA}=\dfrac{DE+DC}{DC}\)
=>\(\dfrac{AE}{BA}=\dfrac{CE}{DC}\)
=>\(\dfrac{CD}{CE}=\dfrac{AB}{AE}\left(3\right)\)
Từ (1),(2),(3) suy ra EI=EK
a) Xét tam giác AHD và tam giác CKD có:
AHD=CKD=90
\(D_1=D_2\) (2 góc đối đỉnh)
=> tam giác AHD đồng dạng tam giác CKD (g-g)
=> đpcm
b) Xét tam giác AHB và tam giác CKB có
AHB=BKC=90
ABD=DBC ( BD là tia phân giác ABC)
=> Tam giác AHB đồng dạng CKB (g-g)
=> \(\dfrac{AB}{HB}=\dfrac{BC}{KB}=>AB.KB=BC.HB\)
a: Xét ΔAEF có
AH là đường cao
AH là đường phân giác
Do đó: ΔAEF cân tại A
Xét ΔAEF có BM//EF
nên \(\dfrac{AB}{AE}=\dfrac{AM}{AF}\)
mà AE=AF
nên AB=AM
=>ΔABM cân tại A
b: Kẻ BK//AC(K\(\in\)EF)
Xét tứ giác BMFK có
BM//FK
BK//MF
DO đó: BMFK là hình bình hành
=>BK=MF
Xét ΔBDK và ΔCDF có
\(\widehat{BDK}=\widehat{CDF}\)(hai góc đối đỉnh)
DB=DC
\(\widehat{DBK}=\widehat{DCF}\)(BK//CF)
Do đó: ΔBDK=ΔCDF
=>BK=CF
Ta có: BK//FC
=>\(\widehat{BKE}=\widehat{AFE}\)
=>\(\widehat{BKE}=\widehat{BEK}\)
=>BE=BK
mà BK=FC và BK=MF
nên MF=BE=CF