Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
27
\(27^8:9^4=\left(3^3\right)^8:\left(3^2\right)^4=3^{24}:3^8=3^{32}\)
=9x2^25-2^2x2^26/2^24x5^2-2^27x3
=9x2^25-2^28/2^24x5^2-2^27x3
=2^25x(9-2^3)/2^24x(5^2-2^3x3)
=2^25/2^24
=2^1=2
\(A=1-3+3^2-3^3+...-3^{2021}+3^{2022}\)
\(\Rightarrow3A=3-3^2+3^3-3^4+...-3^{2022}+3^{2023}\)
\(\Rightarrow3A+A=4A\)
\(=\left(1-3+3^2-3^3+...-3^{2021}+3^{2022}\right)+\left(3-3^2+3^3-3^4+...-3^{2022}+3^{2023}\right)\)
\(=1+3^{2023}\)
\(\Rightarrow4A-3^{2023}=1+3^{2023}-3^{2023}=1\)
\(\frac{75.5^4+175.5^4}{20.25.125-625.75}=\frac{\left(75+175\right).5^4}{4.5.25.5^3-5^4.75}\)
\(=\frac{250.5^4}{100.5^4-5^4.75}=\frac{250.5^4}{\left(100-75\right).5^4}\)
\(=\frac{250}{25}=10\)
\(A=1-3+3^2-3^3+...+3^{2021}-3^{2022}\)
\(3A=3-3^2+3^3-3^4+...+3^{2022}-3^{2023}\)
\(3A-A=\left(1-3+3^2-3^3+...+3^{2021}-3^{2022}\right)-\left(3-3^2+3^3-3^4+...+3^{2022}-3^{2023}\right)\)
\(2A=3^{2023}-1\)
\(\Rightarrow A=\left(3^{2023}-1\right)\div2\)
\(\text{cái này mình sợ sai nên bạn có thể nhờ cô chữa}\)
272 : 253
= (33)2 : (52)3
= 36 : 56
\(=\frac{3^6}{5^6}\)
\(=\left(\frac{3}{5}\right)^6\)
=))
272:253
=(33)2:(52)3
=36:56
=(3:5)6
=\(\left(\frac{3}{5}\right)^6\)