K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 10 2019

\(\frac{x}{y}=\frac{3}{5}\Rightarrow\frac{x}{3}=\frac{y}{5}\) ; \(\frac{y}{z}=\frac{4}{3}\Rightarrow\frac{y}{4}=\frac{z}{3}\)

ta có :

\(\frac{x}{3}=\frac{y}{5}\)

\(\frac{y}{4}=\frac{z}{3}\)

\(\Rightarrow\frac{x}{12}=\frac{y}{20}=\frac{z}{15}\)

áp dụng tính chất dãy tỉ số bằng nhau, ta có :

\(\frac{x}{12}=\frac{y}{20}=\frac{z}{15}=\frac{4x}{48}=\frac{2z}{30}=\frac{4x-y+2z}{48-20+30}=\frac{116}{58}=2\)

\(\frac{x}{12}=3\Rightarrow x=36\)

\(\frac{y}{20}=2\Rightarrow y=40\)

\(\frac{z}{15}=2\Rightarrow z=30\)

12 tháng 7 2019

a

Đặt \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=k\)

\(\Rightarrow x=2k+1;y=3k+2;z=4k+3\)

Thay vào,ta được:

\(2\left(2k+1\right)+3\left(3k+2\right)-\left(4k+3\right)=50\)

\(\Leftrightarrow4k+2+9k+6-4k-3=50\)

\(\Leftrightarrow9k+5=50\)

\(\Leftrightarrow9k=45\)

\(\Leftrightarrow k=5\)

12 tháng 7 2019

\(\frac{x-1}{2}=\frac{y+3}{4}=\frac{z-5}{6}=\frac{5x-5}{10}=\frac{3y+9}{12}=\frac{4z-20}{24}\)

\(=\frac{5x-5-3y-9-4z+20}{10-12-24}=\frac{\left(5x-3y-4z\right)+\left(20-5-9\right)}{26}=\frac{46+6}{26}=2\)

\(\Rightarrow x=2\cdot2+1=5\)

\(y=4\cdot2-3=5\)

\(z=2\cdot6+5=17\)

Câu c tương tự như câu 1

27 tháng 9 2019

Ta có : 3x = 2y => x/2 = y/3

7x = 5z => x/5 = z/7

 => x/2 = y/3 ; x/5 = z/7

 => x/10 = y/15 ; x/10 = z/21

 => x/10 = y/15 = z/21

 Áp dụng tính chất dãy tỉ số bằng nhau :

 x/10 = y /15 = z/21 = (x-y+z)/(10-15+21) = 32/16 = 2

đến đây xét x,y,z

 Câu b tương tự

a: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{10}=\dfrac{y}{15}=\dfrac{z}{21}=\dfrac{x-y+z}{10-15+21}=\dfrac{32}{16}=2\)

Do đó: x=20; y=30; z=42

b: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{\dfrac{3}{2}}=\dfrac{y}{\dfrac{4}{3}}=\dfrac{z}{\dfrac{5}{4}}=\dfrac{x+y+z}{\dfrac{3}{2}+\dfrac{4}{3}+\dfrac{5}{4}}=\dfrac{49}{\dfrac{49}{12}}=12\)

Do đó: x=18; y=16; z=15

c: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x-1}{2}=\dfrac{y-2}{3}=\dfrac{z-3}{4}=\dfrac{2x+3y-z-2-6+3}{2\cdot2+3\cdot3-4}=5\)

Do đó: x-1=10; y-2=15; z-3=20

=>x=11; y=17; z=23

16 tháng 7 2018

a) Ta có: x/10=y/6=z/24 và 5x+y—2x=28

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

x/10=y/6=z/24=5x/50+y/6–2x/48= 5x+y—2x/50+6–48=28/ 8

Ta được: x= 10.28/8=35

y= 6.28/8=21

z=24.28/8=84

2 tháng 9 2018

Áp dụng tính chất dãy tỉ số bằng nhau

\(\frac{x}{5}=\frac{y}{7}=\frac{z}{9}=\frac{x-y+z}{5-7+9}=\frac{315}{7}=45\)

  suy ra:   x/5 = 45   =>  x  =  225

               y/7 = 45  =>  y  =  315

               z/9 = 45  =>  z  =  405

23 tháng 6 2015

a)ta có: x/10 = y/6 = z/21=>5x/50=y/6=2z/42

áp dụng tính chất của dãy tỉ số = nhau ta có:

5x/50=y/6=2z/42=5x+y-2z/50+6-42=28/14=2

suy ra: 5x/50=2=>5x=100=>x=20

y/6=2=>y=12

2z/42=2=>84=>z=42

b)3x = 2y ; 7y = 5z

=>x/2=y/3;y/5=z/7

=>x/10=y/15;y/15=z/21

=>x/10=y/15=z/21

áp dụng tính chất của dãy tỉ số = nhau ta có:

x/10=y/15=z/21=x-y+z/10-15+21=32/16=2

suy ra :

x/10=2=>x=20

y/15=2=>y=30

z/21=2=>z=42

c) x/3 = y/4 ; y/3 = z/5

=>x/9=y/12;y/12=z/20

=>x/9=y/12=z/20

=>2x/18=3y/36=z/20

áp dụng tính chất của dãy tỉ số = nhau ta có:

2x/18=3y/36=z/20=2x-3y+z/18-36+20=6/2=3

suy ra 

2x/18=3=>2x=54=>x=27

3y/36=3=>3y=108=>y=36

z/20=3=>z=60

d)2x/3 = 3y/4 = 4z/5

=>12x/18=12y/16=12z/15

áp dụng tính chất của dãy tỉ số = nhau ta có:

12x/18=12y/16=12z/15=12x+12y+12z/18+16+15=12(x+y+z)/49=49/49=12

suy ra 

12x/18=12=>12x=216=>x=18

12y/16=12=>12y=192=>y=16

12z/15=12=>12z=180=>z=15

d)đặt x-1/2=y-2/3=z-3/4=k

=>x=2k+1

y=3k+2

z=4k+3

thay x=2k+1;y=3k+2;z=4k+3 vào 2x+3x-z=50 ta được:

2(2k+1)+3(3k+2)-(4k+3)=50

4k+2+9k+6-4k-3=50

9k+5=50

9k=45

k=5

=>x=2k+1=2.5+1=11

y=3k+2=3.5+2=17

z=4k+3=4.5+3=23

23 tháng 6 2015

đặt x-1/2=y-2/3=z-3/4=k

=> x=2K+1, y=3k+2, z=4k+3

=>2x+3y-z=4K+2+9k+6-4k-3=9K+5=50

=>K=5

=>x=11, y=17, z=23

chúc học tốt nhé!

22 tháng 6 2015

b) 3x = 2y

=>  x/2 = y/3      (1)

7y = 5z

=> y/5 = z/7       (2)

Từ (1) và (2), có:

     \(\frac{x}{2}=\frac{y}{3};\frac{y}{5}=\frac{z}{7}\Rightarrow\)\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)

áp dụng tính chất của dãy tỉ số bằng nhau, có:

     \(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x-y+z}{10-15+21}=\frac{32}{16}=2\)

x/10 = 2            => x = 2 x 10 =20

y/15 = 2            => y = 2 x 15 = 30

z/21 = 2            => z = 2 x 21 = 42