K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Phần 1: Trắc nghiệm Câu 1: Đặt ƯCLN(90, 135, 270) = x. Khi đó giá trị của x là: A. 90 B. 5 C. 9 D. 45 Câu 2: Kết luận nào sau đây là khẳng định đúng? A. ƯC(180,234) = Ư(18) B. ƯC(180, 234) = Ư(90) C. ƯC(180,234) = Ư(36) D. C. ƯC(180,234) = Ư(72) Câu 3: Đặt BCNN(27, 315) = y. Khi đó giá trị của y là: A. y = 9 B. y = 945 C. y = 135 D. y = 189 Câu 4: Có bao nhiêu số tự nhiên có ba chữ số là bội chung của 11 và 12? A. 6 B. 7...
Đọc tiếp

Phần 1: Trắc nghiệm
Câu 1: Đặt ƯCLN(90, 135, 270) = x. Khi đó giá trị của x là:
A. 90 B. 5 C. 9 D. 45
Câu 2: Kết luận nào sau đây là khẳng định đúng?
A. ƯC(180,234) = Ư(18) B. ƯC(180, 234) = Ư(90)
C. ƯC(180,234) = Ư(36) D. C. ƯC(180,234) = Ư(72)
Câu 3: Đặt BCNN(27, 315) = y. Khi đó giá trị của y là:
A. y = 9 B. y = 945 C. y = 135 D. y = 189
Câu 4: Có bao nhiêu số tự nhiên có ba chữ số là bội chung của 11 và 12?
A. 6 B. 7 C. 8 D. 9
Phần 2: Một số dạng toán vận dụng
Câu 5: Một lớp có 27 học sinh nam và 18 học sinh nữ. Có bao nhiêu cách chia lớp đó thành các tổ sao
cho số học sinh nam và học sinh nữ ở mỗi tổ là như nhau? Cách chia nào để mỗi tổ có số học sinh ít
nhất?
Câu 6: Trong một đợt trồng cây, học sinh của lớp 6B đã trồng được một số cây. Số đó là số tự nhiên
nhỏ nhất thỏa mãn chia 3 dư 2, chia 4 dư 3, chia 5 dư 4, chia 10 dư 9. Hỏi học sinh lớp 6B đã trồng
được bao nhiêu cây?
Câu 7: Tìm số tự nhiên nhỏ nhất sao cho số đó chia cho 3 dư 2, chia cho 5 dư 3, chia cho 7 dư 4.

3
6 tháng 11 2023

Phần 2

Câu 5:

Gọi x (tổ) là số tổ có thể chia (x ∈ ℕ*)

⇒ x ∈ ƯC(27; 18)

Ta có:

27 = 3³

18 = 2.3²

⇒ ƯCLN(27; 18) = 3² = 9

⇒ x ∈ ƯC(27; 18) = Ư(9) = {1; 3; 9}

Vậy có 3 cách chia tổ là: 1 tổ; 3 tổ và 9 tổ

Để mỗi tổ có số học sinh ít nhất thì số tổ là lớn nhất là 9 tổ

6 tháng 11 2023

Phần 2

Câu 6

Gọi x (cây) là số cây cần tìm (x ∈ ℕ*)

Do số cây là nhỏ nhất và khi chia 3 dư 2, chia 4 dư 3, chia 5 dư 4, chia 10 dư 9 nên x + 1 = BCNN(3; 4; 5; 10)

Ta có:

3 = 3

4 = 2²

5 = 5

10 = 2.5

⇒ x + 1 = BCNN(3; 4; 5; 10) = 2².3.5 = 60

⇒ x = 60 - 1 = 59

Vậy số cây cần tìm là 59 cây

6 tháng 11 2023

Câu 1:

Ta có:

\(90=2\cdot3^2\cdot5\)

\(135=3^3\cdot5\)

\(270=2\cdot5\cdot3^3\)

\(\Rightarrow x=ƯCLN\left(90;135;270\right)=3^2\cdot5=45\)

Chọn đáp án D

6 tháng 11 2023

Câu 3:

Ta có:

\(27=3^3\)

\(315=3^2\cdot5\cdot7\)

\(\Rightarrow y=BCNN\left(27;315\right)=3^3\cdot5\cdot7=945\)

Chọn phương án B 

Câu 4: Ta có:

\(BCNN\left(11;12\right)=132\)

\(\Rightarrow BC\left(11;12\right)=\left\{0;132;264;396;528;660;792;924;...\right\}\)

Vậy có 7 số có 3 chữ số là bội chung của 11 và 12

Chọn phương án B 

3 tháng 5 2018

không biết

3 tháng 7 2016

A: 540

16 tháng 10 2016

thanks you Very much

5 tháng 12 2019

                                                     Bài giải

a) Không tìm được GTLN

Tìm GTNN :

Do \(\left|x-2\right|\ge0\) \(\Rightarrow\text{ }\left|x-2\right|+2019\ge2019\) Dấu " = " xảy ra khi \(\left|x-2\right|=0\)\(\Rightarrow\text{ }x-2=0\text{ }\Rightarrow\text{ }x=2\)

Vậy GTNN của \(\left|x-2\right|+2019\) là 2019

b,  GTLN :

Do \(\left|x+1\right|\ge0\text{ }\Rightarrow\text{ }2018-\left|x+1\right|\le2018\) Dấu " = " xảy ra khi \(\left|x+1\right|=0\text{ }\Rightarrow\text{ }x+1=0\text{ }\Rightarrow\text{ }x=-1\)

\(\Rightarrow\text{ }Max\text{ }2018-\left|x+1\right|=2018\)

GTNN không tìm được

c, Quên cách làm rồi !

28 tháng 2 2020

a) A= |x+2| + 2019

Vì đằng trước |x+2| là dấu "+" nên biểu thức A phải tìm GTNN

Vì |x+2| luôn lớn hơn hoặc bằng 0 (ghi kí hiệu nha), với mọi x

nên |x+2| + 2019 luôn hơn hoặc bằng 2019, với mọi x

Khi dấu "=" xảy ra thì biểu thức A đạt GTNN là 2019 

Khi đó: |x+2|=0

=>         x+2 =0

=>         x=-2

Vậy biểu thức A đạt GTNN là 2019 khi x= -2

b) B= 2018 - |x+1|

Vì đằng trước |x+1| là dấu "-" nên biểu thức B phải tìm GTLN

Vì -|x+1| luôn bé hơn hoặc bằng 0, với mọi x

nên 2018 -|x+1| luôn bé hơn hoặc bằng 0, với mọi x

Khi dấu "=" xảy ra thì biểu thức B đạt GTLN là 2018

Khi đó: |x+1| =0

=>         x+1  =0

=>         x=-1

Vậy biểu thức B đạt GTLN là 2018 khi x =-1

c) C = |x-3| + |y-2| +2020

Vì đằng trước |x-3| và |y-2| là dấu "+' nên biểu thức C phải tìm GTNN 

Vì |x-3| luôn lớn hơn hoặc bằng 0, với mọi x

và |y-2| luôn lớn hơn hoặc bằng 0, với mọi y

=> |x-3| + |y-2| luôn lớn hơn hoặc bằng 0, với mọi x, y

=> |x-3| + |y-2| + 2020 luôn lớn hơn hoặc bằng 2020, với mọi x, y

Khi dấu "=" xảy ra thì biểu thức C đạt GTNN là 2020 

Khi đó: |x-3|=0 và |y-2|=0

=>         x-3=0 và   y-2=0

=>         x=3    và   y=2

Vậy biểu thức Cđạt GTNN là 2020 khi x=3 và y=2