K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xet (O) có

ΔACD nội tiếp

AD là đường kính

=>ΔACD vuông tại C

Xét ΔACD vuông tại C và ΔAHB vuông tại H có

góc ADC=góc ABH

=>ΔACD đồng dạng với ΔAHB

=>AC/AH=AD/AB và góc CAD=góc HAB

=>AC*AB=AD*AH và góc CAH=góc BAD

b: Xét tứ giác ABHE có

góc AHB=góc AEB=90 độ

=>ABHE là tứ giác nội tiếp

=>góc AHE=góc ABE

=>góc AHE+góc HAC=90 độ

=>HE vuông góc AC

Xét tứ giác AHFC có

góc AHC=góc AFC=90 độ

=>AHFC là tứ giác nội tiếp

=>góc HFA=góc HCA

=>góc HFA+góc BAD=90 độ

=>HF vuông góc AB

a: góc AEB=góc AHB=90 độ

=>AEHB nội tiếp

Xét ΔAHB vuông tại H và ΔACD vuông tại C có

góc ABH=góc ADC

=>ΔAHB đồng dạng với ΔACD
b: góc HAC+góc AHE

=góc ABE+90 độ-góc HAB

=90 độ

=>HE vuông góc AC

=>HE//CD

18 tháng 4 2020

Hình bạn tự vẽ nha!!

a.)Ta có:\(AH\perp BC\Rightarrow\widehat{AHB}=90^0\) 

              \(BE\perp AD\Rightarrow\widehat{AEB}=90^0\)

Xét tứ giác \(AEHB\)có:

            \(\widehat{AHB}=\widehat{AEB}\left(=90^0\right)\)

Mà 2 góc này cùng nhìn \(AB\)

\(\Rightarrow\)Tứ giác\(AEHB\)nội tiếp (o)

\(\Rightarrow\)\(A,E,H,B\in\)đường tròn.

b.)Có tứ giác \(AEHB\)nội tiếp

\(\Rightarrow\widehat{DEH}=\widehat{HBA}\)

\(\Rightarrow\widehat{DEH}=\widehat{CBA}\)

Trong (o) có:\(\widehat{CDA}=\widehat{CBA}\)(2 góc nội tiếp chắn cung \(AC\))

\(\Rightarrow\widehat{CDA}=\widehat{DEN}\left(=\widehat{CBA}\right)\)

Mà 2 góc này ở vị trí SLT

\(\Rightarrow EH//CD\left(\text{đ}pcm\right)\)

a)

Xét (O) có

M là trung điểm của dây BC(gt)

nên OM\(\perp\)BC(Định lí đường kính vuông góc với dây)

Xét tứ giác BMOF có 

\(\widehat{BFO}+\widehat{BMO}=180^0\left(90^0+90^0=180^0\right)\)

nên BMOF là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

9 tháng 2 2018

+ ) Ta thấy ngay hai tam giác vuông AHC và ANC có chung cạnh huyền AC nên A, H, N, C cùng thuộc đường tròn đường kính AC.

\(\Rightarrow\widehat{HNA}=\widehat{HCA}\) (Hai góc nội tiếp cùng chắn cung AH)

Ta thấy ngay hai tam giác vuông AMB và AHB có chung cạnh huyền AB nên A, M, H, B cùng thuộc đường tròn đường kính AB.

\(\Rightarrow\widehat{HMN}=\widehat{ABH}\) (Góc ngoài tại đỉnh đối diện bằng góc trong tại đỉnh)

Vậy nên \(\Delta ABC\sim\Delta HMN\left(g-g\right)\)

+) Ta có \(\widehat{ADC}=\widehat{ABC}\)  (Hai góc nội tiếp cùng chắn cung AC)

Mà \(\Delta ABC\sim\Delta HMN\Rightarrow\widehat{ABC}=\widehat{HMN}\) 

nên \(\widehat{ADC}=\widehat{HMN}\)

Chúng lại ở vị trí so le trong nên DC // HM

Ta có \(DC\perp AC\Rightarrow HM\perp AC\)

Gọi J là trung điểm AB

Ta có ngay IJ là đường trung bình tam giác ABC nên IJ // AC

Vậy nên \(HM\perp IJ\)

Mà J là tâm đường tròn ngoại tiếp tứ giác AMHB nên IJ vuông góc cung HM tại trung điểm HM hay IJ là trung trực của HM.

Vậy thì IM = IH.

Tương tự ta có IM = IH = IN hay I là tâm đường tròn ngoại tiếp tam giác HMN.

11 tháng 2 2018

ad dqi