Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Các đơn thức đồng dạng trong các đơn thức sau là: \(5x^2yz;-2x^2yz\) ; \(x^2yz\) ; \(0,2x^2yz\)
b) \(M\left(x\right)=3x^2+5x^3-x^2+x-3x-4\)
\(M\left(x\right)=(3x^2-x^2)+5x^3+(x-3x)-4\)
\(M\left(x\right)=2x^2+5x^3-2x-4\)
\(M\left(x\right)=5x^3+2x^2-2x-4\)
c) \(P+Q=\left(x^3x+3\right)+\left(2x^3+3x^2+x-1\right)\)
\(P+Q=x^3x+3+2x^3+3x^2+x-1\)
\(P+Q=\left(x^3+2x^3\right)+\left(x+x\right)+\left(3-1\right)+3x^2\)
\(P+Q=3x^3+2x+2+3x^2\)
a) 2x2yz + 4xy2z - 5x2yz + xy2z - xyz
= (2x2yz-5x2yz)+(4xy2z+xy2z)-xyz
= -3x2yz + 5xy2z - xyz
b) x3-5xy+3x3+xy-x2+\(\dfrac{1}{2}\)xy-x2
= (x3+3x3)+(xy-5xy+\(\dfrac{1}{2}\)xy)-(x2+x2)
= 4x3-\(\dfrac{7}{2}\)xy-2x2
\(a.5x^2yz.\left(-8xy^3z\right)=-40x^3y^4z^2\)
có bậc là:9
\(b.15xy^2z\left(-\dfrac{4}{3}x^2yz^3\right).2xy=-5x^4y^4z^4\)
có bậc là:12
\(Câu8\)
\(a,A=\dfrac{1}{2}x^3\times\dfrac{8}{5}x^2=\left(\dfrac{1}{2}\times\dfrac{8}{5}\right)x^{3+2}=\dfrac{4}{5}x^5\)
b, \(P\left(0\right)=0^2-5.0+6=6\\ P\left(2\right)=2^2-5.2+6=0\)
Câu 9
\(a,A\left(x\right)+B\left(x\right)=5x^3+x^2-3x+5+5x^3+x^2+2x-3\\ =\left(5x^3+5x^3\right)+\left(x^2+x^2\right)+\left(-3x+2x\right)+\left(5-3\right)\\ =10x^3+2x^2-x+2\)
\(b,H\left(x\right)=A\left(x\right)-B\left(x\right)=5x^3+x^2-3x+5-\left(5x^3+x^2+2x-3\right)\\ =5x^3+x^2-3x+5-5x^3-x^2-2x+3\\ =\left(5x^3-5x^3\right)+\left(x^2-x^2\right) +\left(-3x-2x\right)+\left(5+3\right)\\ =-5x+8\)
\(H\left(x\right)=0\\ \Rightarrow-5x+8=0\\ \Rightarrow x=\dfrac{8}{5}\)
vậy nghiệm của đa thức là \(x=\dfrac{8}{5}\)
bài 1
a) \(-\frac{1}{3}xy\).(3\(x^2yz^2\))
=\(\left(-\frac{1}{3}.3\right)\).\(\left(x.x^2\right)\).(y.y).\(z^2\)
=\(-x^3\).\(y^2z^2\)
b)-54\(y^2\).b.x
=(-54.b).\(y^2x\)
=-54b\(y^2x\)
c) -2.\(x^2y.\left(\frac{1}{2}\right)^2.x.\left(y^2.x\right)^3\)
=\(-2x^2y.\frac{1}{4}.x.y^6.x^3\)
=\(\left(-2.\frac{1}{4}\right).\left(x^2.x.x^3\right).\left(y.y^2\right)\)
=\(\frac{-1}{2}x^6y^3\)
Bài 3:
a) \(f\left(x\right)=-15x^2+5x^4-4x^2+8x^2-9x^3-x^4+15-7x^3\)
\(f\left(x\right)=\left(5x^4-x^4\right)-\left(9x^3+7x^3\right)-\left(15x^2+4x^2-8x^2\right)+15\)
\(f\left(x\right)=4x^4-16x^3-11x^2+15\)
b)
\(f\left(x\right)=4x^4-16x^3-11x^2+15\)
\(f\left(1\right)=4\cdot1^4-16\cdot1^3-11\cdot1^2+15\)
\(f\left(1\right)=4\cdot1^4-16\cdot1^3-11\cdot1^2+15\)
\(f\left(1\right)=-8\)
\(f\left(x\right)=4x^4-16x^3-11x^2+15\)
\(f\left(-1\right)=4\cdot\left(-1\right)^4-16\cdot\left(-1\right)^3-11\cdot\left(-1\right)^2+15\)
\(f\left(-1\right)=24\)
Nhóm 1:-5x\(^2\)yz;\(\dfrac{2}{3}\)x\(^2\)yz
Nhóm 2:3xy\(^2\)z;-\(\dfrac{2}{3}\)xy\(^2\)z
Nhóm 3:10x\(^2\)y\(^2\)z;\(\dfrac{5}{7}\)x\(^2\)y\(^2\)z
a) \(A\left(x\right)=3x^3-4x^4-2x^3+4x^4-5x+3\)
\(\Rightarrow A\left(x\right)=-4x^4+4x^4+3x^3-2x^3-5x+3\)
\(\Rightarrow A\left(x\right)=x^3-5x+3\)
\(B\left(x\right)=5x^3-4x^2-5x^3-4x^2-5x-3\)
\(\Rightarrow B\left(x\right)=5x^3-5x^3-4x^2-4x^2-5x-3\)
\(\Rightarrow B\left(x\right)=-8x^2-5x-3\)
b) \(A\left(x\right)+B\left(x\right)=x^3-5x+3+\left(-8x^2-5x-3\right)\)
\(\Rightarrow A\left(x\right)+B\left(x\right)=x^3-5x+3-8x^2-5x-3\)
\(\Rightarrow A\left(x\right)+B\left(x\right)=x^3-8x^2-5x-5x+3-3\)
\(\Rightarrow A\left(x\right)+B\left(x\right)=x^3-8x^2-10x\)
\(A\left(x\right)-B\left(x\right)=x^3-5x+3-\left(-8x^2-5x-3\right)\)
\(\Rightarrow A\left(x\right)-B\left(x\right)=x^3-5x+3+8x^2+5x+3\)
\(\Rightarrow A\left(x\right)-B\left(x\right)=x^3+8x^2-5x+5x+3+3\)
\(\Rightarrow A\left(x\right)-B\left(x\right)=x^3+8x^2+6\)
!
Câu 80:
Tổng của 3 đơn thức đó là:
\(2^3x^2yz+2x^2yz+\left(-5x^2yz\right)\)
\(=8x^2yz+2x^2yz-5x^2yz\)
\(=\left(8+2-5\right).x^2yz\)
\(=5.x^2yz\)
\(=5x^2yz.\)
Câu 59:
\(P\left(x\right)=5x^3+2x^4-x^2-5x^3-x^4+1+3x^2+5x^2\)
\(\Rightarrow P\left(x\right)=\left(5x^3-5x^3\right)+\left(2x^4-x^4\right)-\left(x^2-3x^2-5x^2\right)+1\)
\(\Rightarrow P\left(x\right)=x^4-\left(-7x^2\right)+1\)
\(\Rightarrow P\left(x\right)=x^4+7x^2+1.\)
Vậy đa thức \(P\left(x\right)=x^4+7x^2+1.\)
Chúc bạn học tốt!