Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(Tự vẽ hình)
- Xét △MNP vuông tại M, áp dụng định lí Pytago:
\(^{NM^2}\)+\(MP^2\)=\(NP^2\)
=\(72^2\)+\(96^2\)=\(NP^2\)
⇔\(NP^2\)=\(72^2\)+\(96^2\)=14400
⇔\(NP\)=\(\sqrt{14400}\)=120cm
- Xét △MNP vuông tại M, đường cao MH, theo hệ thức lượng ta có:
\(MN^2\)=\(NH.NP\)
\(72^2\)=\(NH.120\)
⇔\(NH\)=\(\dfrac{72^2}{120}\)=43,2 cm
- \(MH.NP\)=\(MP.MN\)
⇔ \(MH\)=\(\dfrac{MP.MN}{NP}\)=\(\dfrac{96.72}{120}\)=3,6cm
b: Xét ΔPDM vuông tại P có PH là đường cao ứng với cạnh huyền MD, ta được:
\(MH\cdot MD=MP^2\left(1\right)\)
Xét ΔMNP vuông tại M có MH là đường cao ứng với cạnh huyền NP, ta được:
\(PH\cdot PN=MP^2\left(2\right)\)
Từ (1) và (2) suy ra \(MH\cdot MD=PH\cdot PN\)
a) Vì tam giác MNP vuông tại M, nên MN là đường cao của tam giác và MH là đường trung tuyến. Do đó, MH = MN/2. Với giá trị của MN đã biết, bạn có thể tính được MH.
b) Khi kẻ HD vuông góc với MN tại D và HE vuông góc với MP tại E, ta có MDHE là hình chữ nhật. Vì MH là đường trung tuyến của tam giác MNP, nên MH = DE theo tính chất của đường trung tuyến.
c) Để chứng minh NH = 14,4 và PH = 25,6, chúng ta cần biết thêm thông tin về tam giác MNP hoặc các giá trị khác liên quan. Xin lỗi vì không thể giúp bạn với câu hỏi này vì thiếu thông tin.
d) Để chứng minh , chúng ta cần biết thêm thông tin về tam giác MNP hoặc các giá trị khác liên quan. Xin lỗi vì không thể giúp bạn với câu hỏi này vì thiếu thông tin.
e) Để chứng minh , chúng ta cần biết thêm thông tin về tam giác MNP hoặc các giá trị khác liên quan. Xin lỗi vì không thể giúp bạn với câu hỏi này vì thiếu thông tin.
g) Để chứng minh O là trực tâm của tam giác MNQ, chúng ta cần biết thêm thông tin về tam giác MNP hoặc các giá trị khác liên quan. Xin lỗi vì không thể giúp bạn với câu hỏi này vì thiếu thông tin.
ta sử dụng hệ thức lượng trong tam giác vuông
\(\frac{1}{MN^2}+\frac{1}{MP^2}=\frac{1}{AH^2}\)
mà MN=3MP/4
they vào ta đc : \(\frac{1}{\left(\frac{3}{4}MP\right)^2}+\frac{1}{MP^2}=\frac{1}{12^2}\)
<=> \(\frac{16}{9MP^2}+\frac{1}{MP^2}=\frac{1}{12^2}\)
<==> \(\frac{25}{9MP^2}=\frac{1}{12^2}\)=>\(MP^2=\frac{12^2.15}{9}=240\)
=> MP=\(4\sqrt{15}\)
bài 10: gống cái trên :
tiếp : tính:\(NM=\frac{3}{4}MP=3\sqrt{15}\)
áp dungnj đl pita go ta có :
NP=\(\sqrt{MN^2+MP^2}=5\sqrt{15}\)
a: \(NP=\sqrt{MN^2+MP^2}=10\left(cm\right)\)
b: Xét ΔMNP vuông tại M có MH là đường cao
nên MH*NP=MN*MP
=>MH*10=6*8=48
=>MH=4,8cm
Xét ΔMNP có MD là phân giác
nên \(MD=\dfrac{2\cdot6\cdot8}{6+8}\cdot cos45=\dfrac{24}{7}\sqrt{2}\left(cm\right)\)
c: MN*sinP+MP*sinN
=MN*MN/NP+MP*MP/NP
=(MN^2+MP^2)/NP
=NP^2/NP
=NP
Áp dụng hệ thức lượng trong tam giác vuông vào ΔNMP vuông tại M có MH là đường cao ứng với cạnh huyền NP, ta được:
\(MH^2=HN\cdot HP\)
\(\Leftrightarrow HP=\dfrac{2.4^2}{1.8}=3.2\left(cm\right)\)
Diện tích tam giác MNP là:
\(S_{MNP}=\dfrac{MH\cdot NP}{2}=\dfrac{2.4\cdot5}{2}=6\left(cm^2\right)\)
Áp dụng hệ thức trong tam giác vuông:
`MH^2 =NH.PH`
`=>PH=MH^2 : NH = 2,4^2 : 1,8=3,2(cm)`
`=> NP=NH+PH=5(cm)`
`=> S= 1/2 . MH .NP =6(cm^2)`
\(NP=4,5+6=10,5\left(cm\right)\)
Áp dụng tích chất đường phân giác:
\(\frac{MN}{NE}=\frac{MP}{EP}\Leftrightarrow\frac{MN}{4,5}=\frac{MP}{6}\Leftrightarrow MN=\frac{3}{4}MP\).
Áp dụng định lí Pythagore:
\(NP^2=MP^2+MN^2\)
\(\Leftrightarrow10,5^2=MP^2+\left(\frac{3}{4}MP\right)^2\Leftrightarrow MP=8,4\Rightarrow MN=6,3\)
\(MH=\frac{MN.MP}{NP}=\frac{8,4.6,3}{10,5}=5,04\)
\(NH=\frac{MN^2}{NP}=\frac{6,3^2}{10,5}=3,78\)
\(HE=NE-NH=4,5-3,78=0,72\)
\(S_{MHE}=\frac{1}{2}.MH.HE=\frac{1}{2}.0,72.5,04=1,8144\left(cm^2\right)\)
Sửa đề: MP=24cm
NP=căn 18^2+24^2=30cm
NH=MN^2/NP=18^2/30=324/30=10,8cm
MH=18*24/30=14,4cm