K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 12 2021

TK

2n + 5 chia hết cho n + 1 

 n +1 chia hết cho n + 1

=> 2( n +1 ) chia hết cho n + 1 

=> 2n + 2 chia hết cho n + 1 

=> 2n + 5 - 2n - 2 chia hết cho n+1 

=. 3 chia hết cho n+ 1 

=> n + 1 thuộc ước của 3

28 tháng 12 2022

ta có n+1⋮n+1

mà n+3⋮n+1

\Rightarrow n+3-\left(n+1\right)⋮n+1

\Rightarrow n+3-n-2  ⋮n+1

\Rightarrow  2  ⋮n+1

\Rightarrow n+1\in\text{Ư}_{\left(2\right)}=\text{ }\left\{1;2\right\}

nếu n+1=1\Rightarrow n=0 ( thỏa mãn )

nếu n+1=2\Rightarrow n+1 ( thỏa mãn )

vậy n\in\text{ }\left\{0;1\right\}

b)Ta có:

4n+ 3⋮⋮ 2n+ 1.

Ta có: 2n+ 1⋮⋮ 2n+ 1.

=> 2( 2n+ 1)⋮⋮ 2n+ 1.

=> 4n+ 2⋮⋮ 2n+ 1.

Mà 4n+ 3⋮⋮ 2n+ 1.

=>( 4n+ 3)-( 4n+ 2)⋮⋮ 2n+ 1.

=> 4n+ 3- 4n- 2⋮⋮ 2n+ 1.

=> 1⋮⋮ 2n+ 1.

=> n= 1.

Vậy n= 1.

 Tick cho mình nha!

28 tháng 12 2022

Ta có: 3n+2=3n-3+2+3
Vì (n-1) nên 3(n-1) ⋮ (n-1)
Do đó(3n+2) ⋮ (n-1) khi 5 ⋮ (n-1)
=>(n-1)ϵ Ư(5)={-1;-5;1;5}
=>n ϵ {2;6} vì n-1=1=>n=2
                      n-1=5=>n=6
Vậy n={2;6}

29 tháng 12 2016

c,Ta có: \(n^2+n+1⋮n+1\)

\(\Rightarrow\left(n^2+n\right)+1⋮n+1\)

\(\Rightarrow n\left(n+1\right)+1⋮n+1\)

\(\Rightarrow1⋮n+1\) (vì n(n+1)đã chia hết cho n+1)

\(\Rightarrow n+1=1\Rightarrow n=0\)

21 tháng 11 2021

mình xin lỗi mình đánh máy sai câu hỏi như này

 A) n+7 chia hết cho n+2 ( với n khác 2 )

 B) 3n+1 chia hết cho 2n+3  

17 tháng 12 2017

a) (n+3) Chia hết cho (n-1)

Ta có : (n+3)=(n-1)+4

Vì (n-1) chia hết cho (n-1) 

Nên (n+3) chia hết cho (n-1) thì 4 chia hết cho (n-1)

=> n-1 thuộc Ư(4)={1;2;4}

n-1     1          2             4

n         2          3            5

Vậy n thuộc {2;3;5 } thì (n+3) chia hết cho (n-1)

b)(4n+3) chia hết cho (2n+1)

Ta có : (4n+3)=2n.2+1+2

Vì (2n+1) chia hết cho (2n+1)

Nên (4n+3) chia hết cho (2n+1) thì 3 chia hết cho (2n+1)

=> 2n+1 thuộc Ư(3)={1;3}

2n+1                 1              3 

2n                    0               2

n                      0              1

Vậy n thuộc {0;1} thì (4n+3) chia hết cho (2n+1)

28 tháng 10 2020

a) \(6⋮\left(n-2\right)\Leftrightarrow\left(n-2\right)\inƯ\left(6\right)\)
Có \(Ư\left(6\right)=\left\{1;2;3;6\right\}\)
=>\(\left(n-2\right)\in\left\{1;2;3;6\right\}\)
Ta có bảng:

\(n-2\)\(1\)\(2\)\(3\)\(6\)
\(n\)\(3\)\(4\)\(5\)\(8\)

Vậy \(n\in\left\{3;4;5;8\right\}\)

28 tháng 10 2020

b) \(\left(n+3\right)⋮\left(n-1\right)\Leftrightarrow\frac{n+3}{n-1}\)là số tự nhiên
Có:\(\frac{n+3}{n-1}=\frac{n-1+4}{n-1}=\frac{n-1}{n-1}+\frac{4}{n-1}=1+\frac{4}{n-1}\)
Vì 1 là số tự nhiên nên:
Để \(\frac{n+3}{n-1}\)là số tự nhiên thì \(\frac{4}{n-1}\)phải là số tự nhiên.
Để \(\frac{4}{n-1}\)là số tự nhiên thì: \(4⋮\left(n-1\right)\)
                                            hay: \(\left(n-1\right)\inƯ\left(4\right)\)
Có \(Ư\left(4\right)=\left\{1;2;4\right\}\)
\(\Rightarrow\left(n-1\right)\in\left\{1;2;4\right\}\)
Ta có bảng:

\(n-1\)\(1\)\(2\)\(4\)
\(n\)\(2\)\(3\)\(5\)


Vậy \(n\in\left\{2;3;5\right\}\)

NM
8 tháng 1 2021

câu 1. \(7^{2n-4}=1\Leftrightarrow2n-4=0\Leftrightarrow n=2\)

câu .2 

a. rõ ràng 2x-2 là số chẵn lớn hơn hoạc bằng -2 đồng thời nó là ước của 24 nên ta có

\(2x-2\in\left\{-2;2;4;6;12;24\right\}\Rightarrow x\in\left\{0,2,3,4,7,13\right\}\)

b. rõ ràng 2x+1 là số chẵn lớn hơn hoạc bằng 1 đồng thời nó là ước của 7 nên ta có

\(2x+1\in\left\{1,7\right\}\Rightarrow x\in\left\{0,3\right\}\)

c. ta có \(a+b=a-3+b-4+7\)

ta có a-3 và b-4 chia hết cho 5  còn 7 chia 5 dư 2

vậy a+b chia 5 dư 2..

15 tháng 11 2021

1: \(A=6^{2020}\left(1+6\right)+6^{2022}\left(1+6\right)\)

\(=7\left(6^{2020}+6^{2022}\right)⋮7\)

AH
Akai Haruma
Giáo viên
16 tháng 11 2021

Bài 1:

$A=6^{2020}(1+6+6^2+6^3)=6^{2020}.259=6^{2020}.7.37\vdots 7$

Ta có đpcm.