K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Gọi số học sinh lớp 9A và 9B lần lượt là a,b

Theo đề,ta có:

6a+2a+5b+4b=647 và 6a+5b-2a-4b=187

=>8a+9b=647 và 4a+b=187

=>a=37 và b=39

Gọi số học sinh lớp 9A và 9B lần lượt là a,b

Theo đề,ta có:

6a+2a+5b+4b=647 và 6a+5b-2a-4b=187

=>8a+9b=647 và 4a+b=187

=>a=37 và b=39

2 tháng 2 2019

+ Gọi số học sinh của lớp 9A là x học sinh ( x ∈ ℕ * )

+ Gọi số học sinh của lớp 9B là y học sinh ( y ∈ ℕ * ).

+ Ta có học sinh lớp 9A ủng hộ: 6x quyển sách giáo khoa và 3x quyển sách tham khảo. 

+ Ta có học sinh lớp 9B ủng hộ: 5y quyển sách giáo khoa và 4y quyển sách tham khảo. 

+ Vì tổng số sách học sinh hai lớp ủng hộ là 738 quyển, nên ta có phương trình:  ( 6 x + 3 x ) + ( 5 y + 4 y ) = 738   hay

9 x + 9 y = 738 ⇔ x + y = 82   (1).

+ Số sách giáo khoa học sinh hai lớp ủng hộ là 6x+5y (quyển)

+ Số sách tham khảo học sinh hai lớp ủng hộ là 3x+4y (quyển)

+ Vì số sách giáo khoa nhiều hơn số sách tham khảo là 166 quyển nên ta có phương trình:  ( 6 x + 5 y ) − ( 3 x + 4 y ) = 166 ⇔ 3 x + y = 166    (2).

+ Từ (1) và (2) ta có hệ phương trình  x + y = 82 3 x + y = 166

+ Giải hệ trên được nghiệm  x = 42 y = 40  (thoả mãn điều kiện)

+ Vậy lớp 9A có 42 học sinh và lớp 9B có 40 học sinh

Gọi số học sinh của lớp 9A và 9B lần lượt là a,b

THeo đề, ta có: a+b=82 và 6a+5b-3a-4b=166

=>a+b=82 và 3a+b=166

=>a=42 và b=40

21 tháng 3 2021

Gọi số học sinh của lớp 9A là x (học sinh), số học sinh lớp 9B là y (học sinh) (ĐK: x,y∈N∗)

Số sách giáo khoa mà lớp 9A ủng hộ là 6x (quyển) và số sách tham khảo mà lớp 9A ủng hộ là 3x (quyển)

Số sách giáo khoa mà lớp 9B ủng hộ là 5y (quyển) và số sách tham khảo mà lớp 9A ủng hộ là 4y (quyển)

Từ đó ta có:

Số sách giáo khoa cả hai lớp đã ủng hộ là 6x+5y (quyển)

Số sách tham khảo cả hia lớp đã ủng hộ là 3x+4y (quyển)

Vì cả hai lớp ủng hộ 738 quyển nên ta có phương trình6x+5y+3x+4y=9x+9y=738(1)

Và số sách giáo khoa ủng hộ nhiều hơn số sách tham khảo là 166 quyển nên ta có phương trình (6x+5y)−(3x+4y)=3x+y=166(2)

Từ (1) và (2) ta có hệ phương trình 

{9x+9y=7383x+y=166⇔{x+y=823x+y=166⇔{2x=84y=82−x⇔{x=42(tm)y=40(tm)

Vậy số học sinh của lớp 9A là 42 học sinh, số học sinh lớp 9B là 40 học sinh.

Gọi số học sinh của lớp 9A,9C lần lượt là x,y ( học sinh ) (ĐK:x,y>0

Theo bài ra ta có :

{Số sách giáo khoa mà lớp 9A ủng hộ là 6x (quyển)Số sách tham khảo mà lớp 9A ủng hộ là 3x (quyển)

{Số sách giáo khoa mà lớp 9B ủng hộ là 5y (quyển) Số sách tham khảo mà lớp 9C ủng hộ là 4y (quyển)

 {Tổng số sách giáo khoa cả 2 lớp ủng hộ là : 6x+5y (quyển)Tổng số sách tham khảo cả 2 lớp ủng hộ là : 3x+4y (quyển)

+) Cả 2 lớp ủng hộ thư viện 738 quyển sách nên ta có phương trình.

6x+5y+3x+4y=738

⇔9x+9y=738

⇔x+y=82 (1)

+) Số sách giáo khoa ủng hộ nhiều hơn số sách tham khảo là 166 quyển nên ta có phương trình.

(6x+5y)-(3x+4y)=166

⇔3x+y=166 (2)

Từ (1);(2)⇒  {x+y=823x+y=166

{3x+3y=246(3)3x+y=166(4)

Lấy (3)-(4) ta được : 3x+3y-(3x+y)=246-166

⇔2y=80

⇔y=40(TM)

(3)⇒x=42(TM)

Vậy: Số học sinh của lớp 9A là 42 hs

        Số học sinh của lớp 9C là 40 hs

gọi số hs lớp 8a, 8b lần lượt là a,b (a,b >0)(a, b \(\in\)N)

tổng số sách giáo khoa lớp 8a ủng hộ là 6a (quyển )

tổng số sách giáo khoa lớp 8b ủng hộ là 5b (qu)

tổng số sách giáo khoa 2 lớp ủng hộ là 6a + 5b (qu)

số sách tham khỏa lớp 8a ủng hộ là 3a (qu)

số sách tham khảo lớp 8b ủng hộ là 4b (qu)

tổng số sách tham khảo 2 lớp ủng hộ là 3a + 4b (qu)

mà số SGK lớn hơn số sách TK là 166 qu

\(\Rightarrow\)pt 3a + 4b + 166= 6a +5b

                166= 3a + b               (1)

tổng số sách 2 lớp ủng hộ là 

3a +4b +6a +5b = 738

9a + 9b = 738

a + b= 82             (2)

từ 1 và 2 

suy ra hpt           \(\hept{\begin{cases}a+b=82\\3a+b=166\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}a=42\\b=40\end{cases}}\)(tm)

vậy .................

#mã mã#

Gọi số học sinh lớp 9A và 9B lần lượt là a,b

Theo đề, ta có hệ phương trình:

\(\left\{{}\begin{matrix}6a+3a+5b+3b=738\\6a+5b-3a-3b=166\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}9a+8b=738\\3a+2b=166\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-\dfrac{74}{3}\left(loại\right)\\b=120\end{matrix}\right.\)=>Đề sai rồi bạn

14 tháng 11 2023

Câu 1:

Gọi số học sinh của lớp 9A là x(bạn), số học sinh của lớp 9B là y(bạn)

(Điều kiện: \(x,y\in Z^+\))

Tổng số học sinh của hai lớp là 76 nên ta có:

x+y=76

Số quyển sách lớp 9A quyên góp được là 3x(quyển)

Số quyển sách lớp 9B quyên góp được là 2y(quyển)

Cả hai lớp quyên góp được 189 quyển, nên ta có: 3x+2y=189

Do đó, ta có hệ phương trình:

\(\left\{{}\begin{matrix}x+y=76\\3x+2y=189\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x+3y=228\\3x+2y=189\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}3y-2y=228-189=39\\x+y=76\end{matrix}\right.\)

=>y=39 và x=76-y=76-39=37

Vậy: Lớp 9A có 37 bạn, lớp 9B có 39 bạn

Gọi số bạn được tặng 3 quyển sách và số bạn được tặng 5 quyển sách lần lượt là x(bạn) và y(bạn)

(Điều kiện: \(x,y\in Z^+\))

Số bạn được tặng sách là 42 bạn nên x+y=42(1)

Số quyển sách tặng cho các bạn được tặng 3 quyển là:

3x(quyển)

Số quyển sách tặng cho các bạn được tặng 5 quyển là:

5y(quyển)

Tổng số quyển sách là 146 quyển nên 3x+5y=146(2)

Từ (1) và (2) ta có hệ phương trình:

\(\left\{{}\begin{matrix}x+y=42\\3x+5y=146\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}3x+3y=126\\3x+5y=146\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-2y=-20\\x+y=42\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=10\\x=42-x=42-10=32\end{matrix}\right.\left(nhận\right)\)

Vậy: Số bạn được tặng 3 quyển sách là 32 bạn

Số bạn  được tặng 5 quyển sách là 10 bạn

NV
21 tháng 1

Gọi số bạn tặng 3 quyển sách là x và số bạn tặng 5 quyển sách là y (x;y là các số nguyên dương)

Do lớp có 42 học sinh nên ta có: \(x+y=42\) (1)

Số sách đã tặng: \(3x+5y\)

Do cả lớp tặng được 146 quyển sách nên ta có: \(3x+5y=146\) (2)

Từ (1) và (2) ta có hệ: \(\left\{{}\begin{matrix}x+y=42\\3x+5y=146\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=32\\y=10\end{matrix}\right.\)