Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
8:
\(=\dfrac{cos10-\sqrt{3}\cdot sin10}{sin10\cdot cos10}=\dfrac{2\left(\dfrac{1}{2}\cdot cos10-\dfrac{\sqrt{3}}{2}\cdot sin10\right)}{sin20}=\dfrac{sin\left(30-10\right)}{sin20}=1\)
10:
\(=\left(2-\sqrt{3}\right)^2+\left(2+\sqrt{3}\right)^2\)
=7-4căn 3+7+4căn 3=14
12:
\(=cos^270^0+\dfrac{1}{2}\left[cos60-cos140\right]\)
\(=cos^270^0+\dfrac{1}{2}\cdot\dfrac{1}{2}-\dfrac{1}{2}\cdot2cos^270^0+\dfrac{1}{.2}\)
=1/4+1/2=3/4
Lời giải:
$H=(\sin ^2a+\cos ^2a)^2-2\sin ^2a\cos ^2a$
$=1-\frac{1}{2}(2\sin a\cos a)^2=1-\frac{1}{2}(\sin 2a)^2=1-\frac{2}{9}=\frac{7}{9}$
Đáp án B.
\(\overrightarrow{MN}=\left(2;2\right)\Rightarrow MN=\sqrt{2^2+2^2}=2\sqrt{2}\)
\(\Rightarrow R=\dfrac{MN}{2}=\sqrt{2}\)
Gọi I là tâm đường tròn đường kính MN \(\Rightarrow\) I là trung điểm MN
\(\Rightarrow I\left(0;2\right)\)
Phương trình (C): \(x^2+\left(y-2\right)^2=2\)
b.
Tiếp tuyến d' song song d nên nhận \(\left(3;-5\right)\) là 1 vtpt
Phương trình d' có dạng: \(3x-5y+c=0\)
d' là tiếp tuyến của (C) nên: \(d\left(I;d'\right)=R\)
\(\Leftrightarrow\dfrac{\left|3.0-5.2+c\right|}{\sqrt{3^2+\left(-5\right)^2}}=\sqrt{2}\Leftrightarrow\left|c-10\right|=2\sqrt{17}\)
\(\Rightarrow\left[{}\begin{matrix}c=10+2\sqrt{17}\\c=10-2\sqrt{17}\end{matrix}\right.\)
Có 2 tiếp tuyến thỏa mãn: \(\left[{}\begin{matrix}3x-5y+10+2\sqrt{17}=0\\3x-5y+10-2\sqrt{17}=0\end{matrix}\right.\)
6. Có 4 vecto là \(\overrightarrow{BA};\overrightarrow{CA};\overrightarrow{DA};\overrightarrow{EA}\)
7. \(P=cos0+cos180^0+\left(cos20+cos160\right)+...+\left(cos80+cos100\right)\)
\(=\left(cos0-cos0\right)+\left(cos20-cos20\right)+...+\left(cos80-cos80\right)=0+0+...+0=0\)
8. \(\overrightarrow{BC}-\overrightarrow{AB}=\overrightarrow{BC}+\overrightarrow{BA}=\overrightarrow{BD}\)