Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=\left(\frac{\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\frac{\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2}\right).\frac{\left(x-1\right)^2}{2}\)
\(=\left(\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}-\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}\right).\frac{\left(x-1\right)^2}{2}\)
\(=\frac{\left(x-\sqrt{x}-2\right)-\left(x+\sqrt{x}-2\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}.\frac{\left(x-1\right)^2}{2}\)
\(=\frac{-2\sqrt{x}}{\left(x-1\right)\left(\sqrt{x}+1\right)}.\frac{\left(x-1\right)^2}{2}\)\(=\frac{-\sqrt{x}}{\sqrt{x}+1}.\left(x-1\right)=\frac{-x\sqrt{x}+\sqrt{x}}{\sqrt{x}+1}\)
\(=\left(\frac{\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\frac{\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2}\right).\frac{\left(x-1\right)^2}{2}\)
\(=\left(\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}-\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}\right).\frac{\left(x-1\right)^2}{2}\)
\(=\frac{\left(x-\sqrt{x}-2\right)-\left(x+\sqrt{x}-2\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}.\frac{\left(x-1\right)^2}{2}\)
\(=\frac{-2\sqrt{x}}{\left(x-1\right)\left(\sqrt{x}+1\right)}.\frac{\left(x-1\right)^2}{2}\)\(=\frac{-\sqrt{x}}{\sqrt{x}+1}.\left(x-1\right)=\frac{-x\sqrt{x}+\sqrt{x}}{\sqrt{x}+1}\)
Bài 1 tìm điều kiện của x để biểu thức sau có nghĩa :
a)
ĐKXĐ : 4 - 3x \(\ge0\) <=> -3x \(\ge-4\Rightarrow x\le\dfrac{4}{3}\)
Vậy ĐKXĐ của x là x \(\le\dfrac{4}{3}\) để biểu thức \(\sqrt{4-3x}\) được xác định
b)
ĐKXĐ : \(-\dfrac{2}{1+2x}\ge0\) . Vì -2 < 0 nên => 1 + 2x < 0 <=> 2x < -1 => x < - \(\dfrac{1}{2}\)
Vậy ĐKXĐ của x là \(x< -\dfrac{1}{2}\)
c) \(\sqrt{7x}-\sqrt{2x-3}\)
Vì 7 > 0 nên => x > 0
ĐKXĐ : 2x - 3 \(\ge0\) <=> 2x \(\ge3=>x\ge\dfrac{3}{2}\)
Vậy ĐKXĐ của x là x > 0 và x \(\ge\dfrac{3}{2}\)
d)
Ta có ĐKXĐ : \(\sqrt{\dfrac{5}{2x+5}}\) \(\ge0\) mà vì 5 > 0 nên => 2x + 5 > 0 <=> 2x > - 5 => x > \(-\dfrac{5}{2}\)
Ta có ĐKXĐ : \(\dfrac{x-1}{x+2}\ge0\) ; x + 2 > 0 => x \(\ne-2\)
Ta có BXD :
x x-1 x+2 -2 1 0 0 0 - - + - + + + + - (x-1)/(x+2)
=> \(x< -2\) hoặc x \(\ge1\)
Vậy ĐKXĐ của x là : x > - \(\dfrac{5}{2}\) ; x < -2 hoặc x \(\ge1\)
mình sửa lại câu b là bỏ đi dấu "=" nhé!
Câu d) ĐK:\(\left\{{}\begin{matrix}\dfrac{5}{2x+5}\ge0\\x+2\ne0\end{matrix}\right.\)<=>\(\left\{{}\begin{matrix}2x+5>0\\x\ne-2\end{matrix}\right.\)<=>\(\left\{{}\begin{matrix}x>-\dfrac{5}{2}\\x\ne-2\end{matrix}\right.\)
a. \(\sqrt{4x}+\sqrt{x}=2\Leftrightarrow2\sqrt{x}+\sqrt{x}=2\Leftrightarrow3\sqrt{x}=2\Leftrightarrow\sqrt{x}=\frac{2}{3}\Leftrightarrow x=\frac{4}{9}\)
b. \(\sqrt{x^2-4}=\sqrt{x-2}\Leftrightarrow\hept{\begin{cases}x^2-4=x-2\\x-2\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}\orbr{\begin{cases}x=2\\x=-1\end{cases}}\\x\ge2\end{cases}}\Leftrightarrow x=2\)\(\sqrt{x^2-4}=\sqrt{x-2}\Leftrightarrow\hept{\begin{cases}x^2-4=x-2\\x-2\ge2\end{cases}}\Leftrightarrow\hept{\begin{cases}\left(x-2\right)\left(x+1\right)=0\\x\ge2\end{cases}}\Leftrightarrow x=2\)
c.\(\sqrt{x^2-2x}+\sqrt{2x^2+4x}=2x\Leftrightarrow\hept{\begin{cases}x\ge0\\x^2-2x+2x^2+4x+2\sqrt{x^2-2x}.\sqrt{2x^2+4x}=4x^2\end{cases}}\)
\(\Rightarrow x^2-2x=2\sqrt{x^2-2x}.\sqrt{2x^2+4x}\Leftrightarrow\orbr{\begin{cases}\sqrt{x^2-2x}=0\\\sqrt{x^2-2x}=2\sqrt{2x^2+4x}\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\text{ hoặc }x=2\\x^2-2x=8x^2+16x\end{cases}\Leftrightarrow}\)hoặc x=0 hoặc x=2 hoặc x= -18/7
Kết hợp điều kiện ta có : \(x=0\text{ hoặc }x=2\)
d. Điều kiện \(x\ge3\) ta có :
\(\sqrt{x^2+2x-15}=\sqrt{x-3}+\sqrt{x^2-3x}\Leftrightarrow x^2+2x-15=x^2-2x-3+2\sqrt{x-3}\sqrt{x^2-3x}\)
\(\Leftrightarrow2x-6=\sqrt{x-3}.\sqrt{x^2-3x}\Leftrightarrow4\left(x-3\right)^2=\left(x-3\right)\left(x^2-3x\right)\Leftrightarrow\orbr{\begin{cases}x=3\\x=4\end{cases}}\)
a) = . = . = vì x > 0.
Do đó = .
b) = . = ..
Vì y < 0 nên │y│= -y. Do đó = . = .
c) 5xy. = 5xy. = 5xy..
Vì x < 0, y > 0 nên = -x và = .
Do đó: 5xy = 5xy. = -.
d) 0,2 = = 0,2 =
Nếu x > 0 thì > 0 nên . Do đó 0,2 = .
Nếu x < 0 thì < 0 nên . Do đó 0,2 = -.
a) = . = . = vì x > 0.
Do đó = .
b) = . = ..
Vì y < 0 nên │y│= -y. Do đó = . = .
c) 5xy. = 5xy. = 5xy..
Vì x < 0, y > 0 nên = -x và = .
Do đó: 5xy = 5xy. = -.
d) 0,2 = = 0,2 =
Nếu x > 0 thì > 0 nên . Do đó 0,2 = .
Nếu x < 0 thì < 0 nên . Do đó 0,2 = -.