\(b^2\sqrt{5}\)bằng :

      ...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
11 tháng 8 2020

Từ kết quả bài toán suy ngược ra thôi

Muốn giải thích thì cứ phá 2 vế ra rồi so sánh là tìm ra cách tách biểu thức

NV
11 tháng 8 2020

Câu 4 mình ko biết giải quyết kiểu lớp 9 (mặc dù chắc chắn là biểu thức sẽ được biến đổi như vầy)

Đó là kiểu trình bày của lớp 11 hoặc 12 để bạn tham khảo thôi

26 tháng 5 2017

a)\(\dfrac{\sqrt{243a}}{\sqrt{3a}}=\dfrac{\sqrt{24}.\sqrt{3a}}{\sqrt{3a}}=2\sqrt{6}\)

b)\(\dfrac{3\sqrt{18a^2b^4}}{\sqrt{2a^2b^2}}=3\sqrt{9b^2}=\left[{}\begin{matrix}9b\\-9b\end{matrix}\right.\)

3 tháng 3 2020

Nè bạn :) 

Ta có : \(2ab+2ac\ge4a\sqrt{bc}\) (Cauchy_)

\(\Rightarrow a^2+2ab+2ac+4bc\ge a^2+4a\sqrt{bc}+4bc\)

\(\Rightarrow a^2+2ab+2ac+4bc\ge\left(a+2\sqrt{bc}\right)^2\)

\(\Rightarrow\sqrt{\left(a+2b\right)\left(a+2c\right)}\ge a+2\sqrt{bc}\)\(\left(1\right)\)

Tương tự : \(\sqrt{\left(b+2a\right)\left(b+2c\right)}\ge b+2\sqrt{ac}\)\(\left(2\right)\)

\(\sqrt{\left(c+2a\right)\left(c+2b\right)}\ge c+2\sqrt{ab}\)\(\left(3\right)\)

Từ \(\left(1\right);\left(2\right);\left(3\right)\)\(\Rightarrow\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^2\ge3\)

\(\Rightarrow\sqrt{a}+\sqrt{b}+\sqrt{c}\ge\sqrt{3}\)

Đẳng thức xảy ra khi \(a=b=c=\frac{1}{\sqrt{3}}\)

Thay vào biểu thức M ta được M = \(\frac{\sqrt{3}}{3}\)

27 tháng 9 2018

a) ...= \(\dfrac{1}{4}\).\(6\sqrt{5}\) +\(2\sqrt{5}\) - \(3\sqrt{5}\) +5

= \(\dfrac{3}{2}\sqrt{5}\) -\(\sqrt{5}\) +5

=5 - \(\dfrac{1}{2}\sqrt{5}\)

d) ...= \(\sqrt{\dfrac{a}{\left(1+b\right)^2}}\) . \(\sqrt{\dfrac{4a\left(1+b\right)^2}{15^2}}\)

= \(\sqrt{\dfrac{4a^2\left(1+b\right)^2}{\left(1+b\right)^2.15^2}}\) = \(\sqrt{\dfrac{4a^2}{15^2}}\)= \(\dfrac{2a}{15}\)

1 tháng 10 2018

chỉ câu b,c luôn đi nha nha ❤

28 tháng 6 2017

a) \(ab^2\cdot\sqrt{\dfrac{3}{a^2b^4}}=ab^2\cdot\dfrac{\sqrt{3}}{\sqrt{a^2b^4}}=ab^2\cdot\dfrac{\sqrt{3}}{ab^2}\)

= \(\sqrt{3}\)

b) b. \(\sqrt{\dfrac{27\cdot\left(a-3\right)^2}{48}=}\dfrac{\sqrt{27}\cdot\sqrt{\left(a-3\right)^2}}{\sqrt{48}}\)

= \(\dfrac{3\cdot\sqrt{3}\cdot\left(a-3\right)}{\sqrt{3}\cdot\sqrt{16}}=\dfrac{3\cdot\left(a-3\right)}{4}\)

= 0.75*(a-3)

15 tháng 6 2017

Đầu tiên bạn thế \(a=b=2\) thử xem sao đi nhé.

16 tháng 6 2017

lúc đầu mk bảo đề sai nhưng thầy kt lại vẫn đúng

20 tháng 8 2016

1/ a/ \(\sqrt{0,9.0,16.0,4}=\sqrt{\frac{9.16.4}{10000}}=\sqrt{\frac{\left(3.4.2\right)^2}{10^4}}=\frac{24}{1010}=\frac{6}{25}\)

b/ \(\sqrt{0,0016}=\sqrt{\frac{16}{100}}=\frac{4}{10}=\frac{2}{5}\)

c/ \(\frac{\sqrt{72}}{\sqrt{2}}=\frac{\sqrt{2}.\sqrt{36}}{\sqrt{2}}=\sqrt{36}=6\)

d/ \(\frac{\sqrt{2}}{\sqrt{288}}=\frac{\sqrt{2}}{\sqrt{2}.\sqrt{144}}=\frac{1}{\sqrt{144}}=\frac{1}{12}\)

20 tháng 8 2016

2.

a/ \(\frac{2}{a}.\sqrt{\frac{16a^2}{9}}=\frac{2}{a}.\frac{4\left|a\right|}{3}=-\frac{8a}{3a}=-\frac{8}{3}\) (Vì a<0)

b/ \(\frac{3}{a-1}.\sqrt{\frac{4a^2-8a+4}{25}}=\frac{3}{a-1}.\sqrt{\frac{4\left(a-1\right)^2}{25}}=\frac{3.2\left|a-1\right|}{5.\left(a-1\right)}=\frac{6\left(a-1\right)}{5\left(a-1\right)}=\frac{6}{5}\)

c/ \(\frac{\sqrt{243a}}{\sqrt{3a}}=\frac{9\sqrt{3a}}{\sqrt{3a}}=9\)

d/ \(\frac{3\sqrt{18a^2b^4}}{\sqrt{2a^2b^2}}=\frac{3.3\sqrt{2}.\left|a\right|.\left|b\right|^2}{\sqrt{2}.\left|a\right|.\left|b\right|}=9\left|b\right|\)

10 tháng 7 2018

\(a.\sqrt{2a}.\sqrt{18a}=\sqrt{2a}.3\sqrt{2a}=3.2a=6a\)

\(b.\sqrt{3a.27ab^2}=\sqrt{9a^2b^2.9}=9\text{ |}ab\text{ |}\)

\(c.2y^2.\sqrt{\dfrac{x^4}{4y^2}}=2y^2.\dfrac{x^2}{-2y}=-x^2y\)

\(d.\dfrac{y}{x}.\sqrt{\dfrac{x^2}{y^4}}=\dfrac{y}{x}.\dfrac{x}{y^2}=\dfrac{1}{y}\)

\(e.\sqrt{\dfrac{9a^2}{16}}=\dfrac{3\text{ |}a\text{ |}}{4}\)

\(f.\sqrt{10.16a^2}=-4a\sqrt{10}\)

\(g.\sqrt{a^4\left(3-a\right)^2}=a^2\left(a-3\right)\)

\(h.\sqrt{\dfrac{2a^2b^4}{98}}\sqrt{\dfrac{a^2b^4}{49}}=\dfrac{b^2\text{ |}a\text{ |}}{7}\)

19 tháng 6 2017

a) = \(4\sqrt{3}+3\sqrt{3}-3\sqrt{5}+\sqrt{5}=\sqrt{3}\cdot\left(4+3\right)-\sqrt{5}\cdot\left(3-1\right)=7\sqrt{3}-2\sqrt{5}\)

19 tháng 6 2017

b) = \(2a^2b\sqrt{7b}\)

c) = \(6ab^2\sqrt{2}\)