K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 7 2018

Đáp án A

+ Vì T2 > T1 nên g1 > g2

+ Vì q1 = q2 =q và E1 = E2=E nên a1 = a2 = q E m   ( 1 )

+ Áp dụng định lí hàm sin ta có: 

2 tháng 9 2019

Đáp án C

+ Vì T2 > T1 nên g1 > g2

+ Vì q1 = q2 =q và E1 = E2=E nên a1 = a= q E m (1)

+ Áp dụng định lí hàm sin ta có: 

 

 

26 tháng 4 2019

Đáp án D

 

+ Vì T2 > T1 nên g1 > g2
+ vì q1 = q2 =q và E1 = E2=E nên a1 = a2= q E m   ( 1 )

+ Áp dụng định lí hàm sin ta có: 

20 tháng 7 2016

\(\omega_1=\frac{2\pi}{T_1}=\frac{10\pi}{3}\)\(\omega_2=\frac{2\pi}{T_2}=\frac{10\pi}{9}\)
\(\varphi_2=\omega_2t;\omega_1t=\pi-\varphi_2\)

\(\Rightarrow t=\frac{\pi}{\omega_1+\omega_2}=0,225\left(s\right)\)

V
violet
Giáo viên
11 tháng 5 2016

Hai điểm cách gần nhau nhất là: \(\dfrac{\lambda}{2}=10\Rightarrow \lambda=20cm\)

M O1 O2 d1 d2

M dao động cực đại và cách O2 xa nhất khi M nằm ở vân ngoài cùng về phía O1.

Vị trí vân cực đại này là: \([\dfrac{196}{2.20}]=4\)

\(\Rightarrow d_2-d_1=4.\lambda=4.20=80cm\)

\(\Rightarrow d_2= d_1+80=196+80=276cm\)

Chọn D

V
violet
Giáo viên
11 tháng 5 2016

À, mình làm nhầm, vị trí vân cực đại này phải là: \([\dfrac{196}{20}]=9\)

\(\Rightarrow d_2-d_1=9.\lambda=9.20=180cm\)

\(\Rightarrow d_2=376cm\)

1 tháng 6 2016
Đáp án đúng: A
 

Chọn gốc thế năng tại VT dây thẳng đứng.
Áp dụng định luật bảo toàn năng lượng ta có:
\(W=mgl\left(1-\cos\alpha_0\right)=W_d+W_t=W_d+mgl\left(1-\cos\alpha\right)\)
\(\Rightarrow W_d=mgl\left(1-\cos\alpha_0-1+\cos\alpha\right)=mgl\left(\frac{\alpha^2_0}{2}-\frac{\alpha^2}{2}\right)\)
\(=0,1.10.0,8.\left(\frac{\left(\frac{8}{180}\pi\right)^2-\left(\frac{4}{180}\pi\right)^2}{2}\right)\approx5,84\left(mJ\right)\)

16 tháng 5 2016

giải chi tiết nhé 

16 tháng 5 2016

Sóng cơ học

6 tháng 8 2016

Áp dụng công thức tính năng lượng dao động của con lắc đơn ta có:
\(W_1 = \dfrac{1}{2}.m_1.g.\ell_1. \alpha_1 ^{2}\)\(W_2 = \dfrac{1}{2}.m_2.g.\ell_2. \alpha_2 ^{2}\)
Theo giả thiết hai con lắc đơn có cùng năng lượng

\(\Rightarrow \dfrac{1}{2}.m_1.g.\ell_1. \alpha_1 ^{2}=\dfrac{1}{2}.m_2.g.\ell_2. \alpha_2 ^{2}\)
Do khối lượng hai con lắc bằng nhau nên:

\(\ell_1.\alpha_1 ^{2} = \ell_2. \alpha_2 ^{2}\)

\(\Rightarrow \alpha_2 = \alpha_1 .\sqrt{l1/l2}\).

Thay số ta tìm được: \(\alpha_2 = 5,625^0\)

7 tháng 8 2016

Thanks nhìu

Con lắc đơn gồm 1 dây kim loại nhẹ có đầu trên cố định, đầu dưới treo một vật nhỏ. chiều dài của dây treo là 20cmcon lắc dao động điều hòa với anpha0=0,15 rad. Con lắc dao động trong từ trường đều, vecto cảm ứng từ B vuônggóc với mặt phẳng dao động của con lắc. B= 0,5T, g=9,8 m/s2. Suất điện động cực đại xuất hiện trên dây kim loại là:A. 17 mV                        B. 21mV  ...
Đọc tiếp

Con lắc đơn gồm 1 dây kim loại nhẹ có đầu trên cố định, đầu dưới treo một vật nhỏ. chiều dài của dây treo là 20cm

con lắc dao động điều hòa với anpha0=0,15 rad. Con lắc dao động trong từ trường đều, vecto cảm ứng từ B vuông

góc với mặt phẳng dao động của con lắc. B= 0,5T, g=9,8 m/s2. Suất điện động cực đại xuất hiện trên dây kim loại là:

A. 17 mV                        B. 21mV                    C. 8,5 mV                         D. 10,5 mV

-trong sách giải có trình bày như này ạ: 

              Suất điện động trên dây kim loại:  e= Blvsin\(\alpha\)  với anpha (B,v) = 90 độ 

               vmax = \(\sqrt{gl}\alpha_0\) = 0,21 m/s 

               suy ra emax = Blvmax = 0,021 V

-em tham khảo trên mạng dạng bài tương tự thì thấy có ghi

      e=\(\frac{Bl^2w}{2}\)

     emax khi wmax            suy ra     wmax=\(\frac{v_{max}}{R}=\frac{\sqrt{2gl\left(1-cos\alpha_0\right)}}{l}\)      thay số tính ra e = 10,5 mV

Vậy cách làm nào mới đúng vậy thầy.

1
31 tháng 5 2016

Cách thứ 2 mới đúng em nhé. 

Cách 1 chỉ đúng khi dây kim loại chuyển động tịnh tiến, nhưng ở đây là dây kim loại quay quanh 1 đầu cố định.

Mình giải thích thêm về công thức trên như sau.

Ta có suất điện đọng tính bởi :

\(e=\dfrac{\Delta\phi}{\Delta t}=\dfrac{B.\Delta S}{\Delta t}=\dfrac{B.\Delta (\dfrac{\alpha}{2\pi}.\pi^2.l )}{\Delta t}=\dfrac{B.\Delta\alpha.l^{2}}{2.\Delta t}=\dfrac{B.l^{2}\omega}{2}\)

Với \(\Delta \alpha\) là góc quay trong thời gian \(\Delta t\) \(\Rightarrow \omega = \dfrac{\Delta \alpha}{\Delta t}\)

\(e_{max}\) khi \(\omega_{max}\), với  \(\omega_{max}=\dfrac{v_{max}}{R}=\dfrac{\sqrt{2gl(1-\cos\alpha)}}{l}\)

Thay vào trên ta tìm đc \(e_{max}\)