Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tứ giác ADME có:
∠(DAE) = ∠(ADM) = ∠(AEM) = 90o
⇒ Tứ giác ADME là hình chữ nhật (có ba góc vuông).
b) Ta có ME // AB ( cùng vuông góc AC)
M là trung điểm của BC (gt)
⇒ E là trung điểm của AC.
Ta có E là trung điểm của AC (cmt)
Chứng minh tương tự ta có D là trung điểm của AB
Do đó DE là đường trung bình của ΔABC
⇒ DE // BC và DE = BC/2 hay DE // MC và DE = MC
⇒ Tứ giác CMDE là hình bình hành.
c) Ta có DE // HM (cmt) ⇒ MHDE là hình thang (1)
Lại có HE = AC/2 (tính chất đường trung tuyến của tam giác vuông AHC)
DM = AC/2 (DM là đường trung bình của ΔABC) ⇒ HE = DM (2)
Từ (1) và (2) ⇒ MHDE là hình thang cân.
d) Gọi I là giao điểm của AH và DE. Xét ΔAHB có D là trung điểm của AB, DI // BH (cmt) ⇒ I là trung điểm của AH
Xét ΔDIH và ΔKIA có
IH = IA
∠DIH = ∠AIK (đối đỉnh),
∠H1 = ∠A1(so le trong)
ΔDIH = ΔKIA (g.c.g)
⇒ ID = IK
Tứ giác ADHK có ID = IK, IA = IH (cmt) ⇒ DHK là hình bình hành
⇒ HK // DA mà DA ⊥ AC ⇒ HK ⊥ AC
a: Xét tứ giác AMHN có
AM//HN
AN//HM
Do đó: AMHN là hình bình hành
Hình bình hành AMHN có \(\widehat{MAN}=90^0\)
nên AMHN là hình chữ nhật
b: Ta có: AMHN là hình bình hành
=>HM//AN và HM=AN
Ta có: HM//AN
N\(\in\)AE
Do đó: HM//ND
Ta có: HM=NA
NA=ND
Do đó: HM=ND
Xét tứ giác MHDN có
MH//DN
MH=DN
Do đó: MHDN là hình bình hành
c: Gọi O là giao điểm của AH và NM
Ta có: ANHM là hình chữ nhật
=>AH=MN và AH cắt MN tại trung điểm của mỗi đường
=>O là trung điểm chung của AH và MN
Ta có: ΔAEH vuông tại E
mà EO là đường trung tuyến
nên \(EO=\dfrac{AH}{2}=\dfrac{MN}{2}\)
Xét ΔNEM có
EO là đường trung tuyến
\(EO=\dfrac{NM}{2}\)
Do đó: ΔNEM vuông tại E
=>NE\(\perp\)ME
a: Xét tứ giác AMHN có
AM//HN
AN//HM
Do đó: AMHN là hình bình hành
Hình bình hành AMHN có \(\widehat{MAN}=90^0\)
nên AMHN là hình chữ nhật
b: Ta có: AMHN là hình bình hành
=>HM//AN và HM=AN
Ta có: HM//AN
N\(\in\)AE
Do đó: HM//ND
Ta có: HM=NA
NA=ND
Do đó: HM=ND
Xét tứ giác MHDN có
MH//DN
MH=DN
Do đó: MHDN là hình bình hành
c: Gọi O là giao điểm của AH và NM
Ta có: ANHM là hình chữ nhật
=>AH=MN và AH cắt MN tại trung điểm của mỗi đường
=>O là trung điểm chung của AH và MN
Ta có: ΔAEH vuông tại E
mà EO là đường trung tuyến
nên \(EO=\dfrac{AH}{2}=\dfrac{MN}{2}\)
Xét ΔNEM có
EO là đường trung tuyến
\(EO=\dfrac{NM}{2}\)
Do đó: ΔNEM vuông tại E
=>NE\(\perp\)ME
Bài 6 :
Tự vẽ hình nhá :)
a) Gọi O là giao điểm của AC và EF
Xét tam giác ADC có :
EO // DC => AE/AD = AO/AC (1)
Xét tam giác ABC có :
OF // DC
=> CF/CB = CO/CA (2)
Từ (1) và (2) => AE/AD + CF/CB = AO/AC + CO/CA = AO + CO/AC = AC/AC = 1 => đpcm
Bài 7 :
a) Do EF // AB => CF / CA = EF / AB => CF / EF = AC / AB (1)
Dựng MG // AC và M là trung điểm của cạnh BC => GM là đường trung bình của tam giác ABC => G là trung điểm của cạnh AB =>AG = BG
Do DK // GM => AD / AG = DK / GM => AD / BG = DK / GM
=> DK / AD = GM / BG = \(\frac{\frac{AC}{2}}{\frac{AB}{2}}=\frac{AC}{AB} \left(2\right)\)
Từ (1) và (2) => CF / EF = DK / AD
Mà tứ giác ADEF là hình bình hành ( vì EF // AD và DE // AF ) nên AD = È
=> CF = DK ( đpcm )
Bài 8 :
Ta có : AB = AM + MB = 11 + 8 = 19 ( cm )
Áp dụng hệ quả định lí Ta-lét vào tam giác ABC, ta có :
AM / AB = AN / AC => AM + AB / AB = AN + AC / AC => 19 + 11 / 19 = AN + 38 / 38 => 30/19 = 38 + AN / 38
=> 1140 = 19.AN + 722
=> AN = ( 1140 - 722 ) / 19 = 22 ( cm )
=> NC = 38 - 12 = 26 ( cm )
xin lỗi anh(chị) em mới lớp 6 không giải đc
thật lòng xin lỗi :(((((
((((((((🙄)))))))))___________bn ghi như mình đi thì bn sẽ có cái nịt 👉👈!!!
Bài 1:
a: Xét ΔABC có
M là trung điểm của AB
N là trung điểm của AC
Do đó: MN là đường trung bình
=>MN//BC
hay BMNC là hình thang
b: Xét ΔABK có MI//BK
nên MI/BK=AM/AB=1/2(1)
XétΔACK có NI//CK
nên NI/CK=AN/AC=1/2(2)
Từ (1)và (2) suy ra MI/BK=NI/CK
mà MI=NI
nên BK=CK
hay K là trug điểm của BC
Xét ΔABC có
K là trung điểm của BC
M là trung điểm của AB
Do đó: KM là đường trung bình
=>KM//AN và KM=AN
hay AMKN là hình bình hành