K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 5 2019

a, xét tam giác ADC và tam giấcBDE có

^ADC=^BDE(dd)

^ACB=^BED=90 đọ

=> tam giác ADC đồng dạng với tam giác BDE(g-g)

=> DA/BD=DC/DE

=> DA*DE=BD*DE

17 tháng 4 2023

 ΔDCA vuông tại C và ΔDEB vuông tại E có

góc CDA=góc EDB

=>ΔDCA đồng dạng với ΔDEB

=>DC/DE=DA/DB

=>DA*DE=DB*DC

23 tháng 5 2018

a, ta có góc FCD=90°; FED=90°( góc nội tiếp chắn 1/2 đtròn )

xét tứ giác FCDE có góc FCD+FED=90°+90°=180°

suy ra FCDE nội tiếp

b,xét hai tam giác CED và ABD có

góc CDE=ADB( đđ )

góc ECD=DAB=1/2sđ cung EB( góc nội tiếp chắn cung EB)

suy ra hai tam giác đó đồng dạng

suy ra DE/DB=DC/AD

suy ra DE.DA=DB.DC(đpcm)

c, ta có góc CDF=CEF( góc nội tiếp cùng chắn cung CF)(1)

góc CED=CBA( góc nội tiếp chắn cung CA)(2)

góc CDF=DCI( tam giác CID cân tại I)(3)

góc OCB=CBO( tam giác OCB cân tại O)(4)

từ 1,3 suy ra góc CEF=DCI(5)

từ2,4 suy ra OCB=CEA(6)

mà góc CEF+CEA=90°(7)

từ 5,6,7 suy ra góc DCI+OCB=90°

suy ra CI là tiếp tuyến của (O)(đpcm)

17 tháng 4 2023

a: góc ACB=góc AEB=1/2*180=90 độ

 

=>CB vuông góc FA,AE vuông góc FB

 

góc FCD+góc FED=180 độ

 

=>FCDE nội tiếp

 

b: Xét ΔDCA vuông tại C và ΔDEB vuông tại E có

 

góc CDA=góc EDB

 

=>ΔDCA đồng dạng với ΔDEB

 

=>DC/DE=DA/DB

 

=>DA*DE=DB*DC

a: Xét (O) có

ΔACB nội tiếp

AB là đường kính

Do đó: ΔACB vuông tại C

Xét (O) có

ΔAEB nội tiếp

AB là đường kính

Do đó: ΔAEB vuông tại E

Xét tứ giác FCDE có 

\(\widehat{FCD}+\widehat{FED}=180^0\)

Do đó: FCDE là tứ giác nội tiếp

b: Xét ΔACD vuông tại C và ΔBED vuông tại E có 

\(\widehat{CDA}=\widehat{EDB}\)

Do đó: ΔACD\(\sim\)ΔBED

Suy ra: DA/DB=DC/DE

hay \(DA\cdot DE=DB\cdot DC\)

17 tháng 4 2023

a: góc ACB=góc AEB=1/2*180=90 độ

 

=>CB vuông góc FA,AE vuông góc FB

 

góc FCD+góc FED=180 độ

 

=>FCDE nội tiếp

 

b: Xét ΔDCA vuông tại C và ΔDEB vuông tại E có

 

góc CDA=góc EDB

 

=>ΔDCA đồng dạng với ΔDEB

 

=>DC/DE=DA/DB

 

=>DA*DE=DB*DC

13 tháng 5 2016

câu a chắc sai đề rồi bạn.

b. xét tam giác CDA và tam giác EDB:

góc CDA = góc EDB (hai góc đối đỉnh)

góc CAE = góc EBC (góc nội tiếp cùng chắn cung CE)

do đó: tam giacs CDA đồng dạng tam giác EDB (g-g)

=> CD/ED = DA/DB => CD.DB=ED.DA

a: góc ACB=góc AEB=1/2*180=90  độ

=>CB vuông góc FA,AE vuông góc FB

góc FCD+góc FED=180 độ

=>FCDE nội tiếp

b: Xét ΔDCA vuông tại C và ΔDEB vuông tại E có

góc CDA=góc EDB

=>ΔDCA đồng dạng với ΔDEB

=>DC/DE=DA/DB

=>DA*DE=DB*DC

17 tháng 4 2023

a: góc ACB=góc AEB=1/2*180=90 độ

=>CB vuông góc FA,AE vuông góc FB

góc FCD+góc FED=180 độ

=>FCDE nội tiếp

b: Xét ΔDCA vuông tại C và ΔDEB vuông tại E có

góc CDA=góc EDB

=>ΔDCA đồng dạng với ΔDEB

=>DC/DE=DA/DB

=>DA*DE=DB*DC

https://hoidap247.com/cau-hoi/296770 cậu vào link này xem bài tham khảo rồi tự làm hộ mk nha, mk bận quá nên k có thời gian giải cả bài ra chi tiết cho Vy đc, thông cảm giùm mk với ạ, thanks ^6 

17 tháng 4 2023

a: góc ACB=góc AEB=1/2*180=90 độ

 

=>CB vuông góc FA,AE vuông góc FB

 

góc FCD+góc FED=180 độ

 

=>FCDE nội tiếp

 

b: Xét ΔDCA vuông tại C và ΔDEB vuông tại E có

 

góc CDA=góc EDB

 

=>ΔDCA đồng dạng với ΔDEB

 

=>DC/DE=DA/DB

 

=>DA*DE=DB*DC

28 tháng 2 2015

a/ Tam giác ABC nội tiếp đường tròn (O) có cạnh AB là đường kính  của đường tròn (O)

=> Tam giác ABC vuông tại C

=> Góc ACB=90 độ (1)

Mà: góc ACB+góc DCF=180 độ (kề bù ) (A,C,F thẳng hàng) (2)

Từ (1) và (2)=>góc DCF=90 độ (3)

Tam giác AEB nội tiếp đường tròn (O) có cạnh AB là đường kính của đường tròn (O)

=> Tam giác AEB vuông tại E

=> góc AEB=90 độ (4)

Mà: góc AEB+góc DEF =180 độ (kề bù) (B,E,F thẳng hàng) (5)

Từ(4) và (5)=>góc DEF=90 độ (6)

Từ (3) và (6)=> góc DCF+góc DEF=180 độ

=> Tứ giác FCDE nội tiếp (đpcm) 

 

28 tháng 2 2015

b/Xét hai tam giác: tam giác ADC và tam giác BED có:

 góc ADC= góc BED (đối đỉnh)

góc ACB= goc AEB (=90 độ theo c/m câu a)

hay góc ACD= góc BED ( C,D,B thẳng hàng và A,D,E thẳng hàng)

Do đó, tam giác ADC đồng dạng với tam giác BED (g.g)

=> DA/DB=DC/DE

<=> DA.DE=DB.DC (đpcm)