K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 8 2020

a,  +Xét tam giác ABM và ACM có:
  AB=AC(Giả thiết)  --
  AM là cạnh chung)  I  =>tam giác ABM=ACM (C-C-C)
  MB=MC(Giả thiết) --
b, +Ta có: tam giác ABM=ACM
 => góc AMB=góc AMC (2 góc tương ứng)
    +Ta có:
góc AMB+AMC=180 ( 2 góc kề bù)
      AMB+AMB=180
      AMB = 90(độ)
=>AM vuông góc với BC
c, +Ta có: tam giác ABM=ACM
     => góc BAM=góc CAM(2 góc tương ứng)
     =>AM là tia phân giác của góc BAC
         hay AM là tia phân giác của góc A
Vậy a,tam giác ABM=ACM
       b,AM vuông góc với BC
       c,AM là tia phân giác của góc A

25 tháng 8 2020

bạn Hà Anh làm đúng rồi

20 tháng 8 2017

 giải thích một số từ viết tắt:tam giác(tg) , góc (g) 
TH1: tia Ax và AC nằm ở 2 nửa mặt phẳng đối nhau bờ là BA. CÒn tia Ay và AB nằm 2 nwả mặt phẳng bờ đối nhau bờ là AC: 
TRên tia MA lấy điểm I sao cho MI=MA. tg BAM=tg CIM(c.g.c) => g ABM=gMCI=> gACI=gACM+gBAM=180- g BAC và BA=CI 
LẠi có gDAE=180-gBAC nên gACI=gDAE. Dễ dàng chứng minh được tgACI=tgEAD(c.g.c)=>DE=AI=2AM 
TH2: tia Ax và AC nằm cùng phía đối với BA. Còn BA và AE cùng phía đối với AC.trên tia đối MA lấy K sao cho KM=KA 
Kéo dài BC nó sẽ cắt EA ở I gEAB= gABC-gAIB=gABC-90-gACB . tg EAB=tgCAD(c.g.c)=>gEAB+gDAC 
TA có : gEAD=(gEAB+gDAC)+gBAC=(gABC-90-gACB)2+(1... =gB+gC=gBCK+gACM=gACK.Chứng minh tg ACK=tgEAD(c.g.c)=>AK=ED=2AM.

29 tháng 10 2021

Cho tam giác ABC vuông góc tại B. trên cùng nửa mặt phẳng bờ chứa tia AC chứa điểm B vẽ tại tia Ax, Cy sao cho góc xAB=30 độ ,góc BCy=60 độ. Tìm kết luận

a) Xét ΔADC và ΔEDB có 

\(\widehat{ACD}=\widehat{EBD}\)(hai góc so le trong, AC//BE)

DC=DB(D là trung điểm của BC)

\(\widehat{ADC}=\widehat{EDB}\)(hai góc đối đỉnh)

Do đó: ΔADC=ΔEDB(g-c-g)

1) Tam giác ABC có I là giao điểm các tia phân giác của góc B và C, M là trung điểm của BC. Biết góc BIM=90 và BI=2IMa. Tính góc BACb.Vẽ IH vuông góc AC. Chứng minh rằng BA=3IH2)Cho tam giác ABC. Lấy các điểm D, E theo thứ tự trên các cạnh AB, AC sao cho BD=CE. Gọi M, N theo thứ tự là trung điểm của BC, DE. Chứng minh rằng đường thẳng MN tạo với các đường thẳng AB, AC các góc bằng nhau3)Cho tam giác ABC. Ở...
Đọc tiếp

1) Tam giác ABC có I là giao điểm các tia phân giác của góc B và C, M là trung điểm của BC. Biết góc BIM=90 và BI=2IM
a. Tính góc BAC
b.Vẽ IH vuông góc AC. Chứng minh rằng BA=3IH

2)Cho tam giác ABC. Lấy các điểm D, E theo thứ tự trên các cạnh AB, AC sao cho BD=CE. Gọi M, N theo thứ tự là trung điểm của BC, DE. Chứng minh rằng đường thẳng MN tạo với các đường thẳng AB, AC các góc bằng nhau

3)Cho tam giác ABC. Ở phía ngoài tam giác ấy vẽ tam giác đều ACE. Trên nửa mặt phẳng chứa C có bờ AB, vẽ tam giác đều ABD. Gọi H, K, M theo thứ tự là trung điểm của AB, AE, CD. Chứng minh rằng HKM là tam giác đều

4)Cho điểm M nằm trên đoạn thẳng AB. Trên cùng một nửa mặt phẳng bờ AB, vẽ các tam giác đều AMC, BMD. Gọi E, F theo thứ tự là trung điểm của AD, BC. Chứng minh rằng EF=1/2CD

0

Bài 1: 

a: Xét ΔABD vuông tại D và ΔACE vuông tại E có

AB=AC

\(\widehat{BAD}\) chung

Do đó: ΔABD=ΔACE

b: Ta có: ΔABD=ΔACE

nên AD=AE

Ta có: AE+EB=AB

AD+DC=AC

mà AB=AC
và AD=AE

nên EB=DC

Xét ΔEBO vuông tại E và ΔDCO vuông tại D có

EB=DC

\(\widehat{EBO}=\widehat{DCO}\)

Do đó: ΔEBO=ΔDCO

c: Xét ΔABO và ΔACO có

AB=AC

BO=CO

AO chung

DO đó:ΔABO=ΔACO

Suy ra: \(\widehat{BAO}=\widehat{CAO}\)

hay AO là tia phân giác của góc BAC