K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 12 2022

a: Xét (O) có

CE,CA là các tiếp tuyến

nên CE=CA và OC là phân giác của góc AOE(1)

Xét (O) có

DE,DB là các tiếp tuyến

nên DE=DB vàOD là phân giác của góc BOE(2)

CD=CE+ED

=>CD=CA+BD

b: Từ (1), (2) suy ra góc COD=1/2*180=90 độ

c: AC*BD=CE*ED=OE^2=R^2=36cm

19 tháng 10 2021

a: Xét (O) có

CE là tiếp tuyến có E là tiếp điểm

CA là tiếp tuyến có A là tiếp điểm

Do đó: CE=CA

Xét (O) có 

DB là tiếp tuyến có B là tiếp điểm

DE là tiếp tuyến có E là tiếp điểm

Do đó: DB=DE

Ta có: CD=CE+ED

nên CD=CA+DB

11 tháng 12 2021

a: Xét (O) có 

CE là tiếp tuyến

CA là tiếp tuyến

Do đó: CE=CA

Xét (O) có 

DE là tiếp tuyến

DB là tiếp tuyến

Do đó: DE=DB

Ta có: CE+DE=CD

nên CD=CA+DB

a: Xét (O) có

CA,CE là tiếp tuyến

nên CA=CE và OC là phân giác của góc AOE(1)

Xét (O) co

DE,DB là tiép tuyến

nên DE=DB và OD là phân giác của góc BOE(2)

CD=CE+ED

=>CD=CA+DB

b: Từ (1), (2) suy ra góc COD=1/2*180=90 độ

a: Xét (O) có

CA,CE là tiếp tuyến

nên CA=CE và OC là phân giác của góc AOE(1)

Xét (O) có

DE,DB là tiếp tuyến

nên DE=DB và OD là phân giác của góc EOB(2)

CE+ED=CD

=>CD=CA+DB

b: Từ (1), (2) suy ra góc COD=1/2*180=90 độ

c: CA=CE

OA=OE

Do đó: CO là trung trực của AE

DE=DB

OE=OB

Do đó: DO là trung trực của EB

Xét tứ giác EIOK có

góc EIO=góc EKO=góc IOK=90 độ

nên EIOK là hình chữ nhật

20 tháng 9 2018

Để học tốt Toán 9 | Giải bài tập Toán 9

a) Theo tính chất của hai tiếp tuyến cắt nhau ta có:

    OC là tia phân giác của ∠AOM

    OD và tia phân giác của ∠BOM

OC và OD là các tia phân giác của hai góc kề bù ∠AOM và ∠BOM nên OC ⊥ OD.

=> ∠COD = 90o (đpcm)

b) Theo tính chất của hai tiếp tuyến cắt nhau ta có:

    CM = AC, DM = BC

Do đó: CD = CM + DM = AC + BD (đpcm)

c) Ta có: AC = CM, BD = DM nên AC.BD = CM.MD

ΔCOD vuông tại O, ta có:

CM.MD = OM2 = R2 (R là bán kính đường tròn O).

Vậy AC.BD = R2 (không đổi).

12 tháng 12 2021

giúp với mọi ng

 

16 tháng 2 2017

Theo tính chất của hai tiếp tuyến cắt nhau ta có:

    CM = AC, DM = BC

Do đó: CD = CM + DM = AC + BD (đpcm)

15 tháng 12 2023

a: Xét (O) có

CA,CE là các tiếp tuyến

Do đó: CA=CE và OC là phân giác của góc AOE

Xét (O) có

DE,DB là các tiếp tuyến

Do đó: DE=DB và OD là phân giác của góc EOB

Ta có: CA+DB

=CE+DE

=CD

b: Ta có: OC là phân giác của góc AOE

=>\(\widehat{AOE}=2\cdot\widehat{EOC}\)

OD là phân giác của góc EOB

=>\(\widehat{EOB}=2\cdot\widehat{EOD}\)

Ta có: \(\widehat{AOE}+\widehat{BOE}=180^0\)(hai góc kề bù)

=>\(2\cdot\widehat{EOC}+2\cdot\widehat{EOD}=180^0\)

=>\(2\cdot\left(\widehat{EOC}+\widehat{EOD}\right)=180^0\)

=>\(2\cdot\widehat{COD}=180^0\)

=>\(\widehat{COD}=90^0\)

3 tháng 1 2018

Bài 1:

a) Ax ⊥ OA tại A, By ⊥ OB tại B nên Ax, By là các tiếp tuyến của đường tròn.

Theo tính chất của hai tiếp tuyến cắt nhau ta có:

CM = CA; DM = DB;

∠O1 = ∠O2; ∠O3 = ∠O4

⇒ ∠O2 + ∠O3 = ∠O1 + ∠O4 = 1800/2 = 900 (tính chất hai tia phân giác của hai góc kề bù).

⇒ ∠OCD = 900

b) CM và CA là hai tiếp tuyến của đường tròn, cắt nhau tại C nên CM = CA

Tương tự:

DM = DB

⇒ CM + DM = CA + DB

⇒ CD = AC + BD.

c) Ta có OM ⊥ CD

Trong tam giá vuông COD, OM Là đường cao thuộc cạnh huyển

OM2 = CM.DM

Mà OM = OA = OA = AB/2 và CM = AC; DM = BD

Suy ra AC.BD = AB2/2 = không đổi