Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(B=\left(2x-y\right)^3-2\left(4x^3+1\right)+6xy+y^3\)
\(=8x^3-12x^2y+6xy-y^3-8x^3-2+6xy+y^3\)
\(=12xy-2\)
`3xy(4x-2y)-(x-2y)^3-2(4y^3-1)`
`=12x^2y-6xy^2-(x^3-6x^2y+12xy^2-8y^3)-8y^3+2`
`=12x^2y-6xy^2-x^3+6x^2y-12xy^2+8y^3-8y^3+2`
`=-x^3+18x^2y-18xy^2+2` (??????)
Sửa đề:
E = (2x - y)² + (3x + y)² + 2(2x - y)(3x + y) + 25(1 + x)(1 - x)
= (2x - y + 3x + y)² + 25 - 25x²
= (5x)² + 25 - 25x²
= 25x² + 25 - 25x²
= 25
Vậy giá trị của E không phụ thuộc vào giá trị của x và y
Bài \(3\)
\(A=\left(x-5\right)\left(2x+3\right)-2x\left(x-3\right)+x+7\)
\(=2x^2+3x-10x-15-\left(2x^2-6x\right)+x+7\)
\(=2x^2+3x-10x-15-2x^2+6x+x+7\)
\(=\left(2x^2-2x^2\right)+\left(3x-10x+6x+x\right)+\left(-15+7\right)\)
\(=-8\)
Vậy biểu thức không phụ thuộc vào biến
\(B=4\left(y-6\right)-y^2\left(2+3y\right)+y\left(5y-4\right)+3y^2\)
Đề như này à?
Bài \(4\)
\(a,4a^2-16b^2=4\left(a^2-4b^2\right)=4\left(a-2b\right)\left(a+2b\right)\)
\(b,4x^2-4x+1=\left(2x\right)^2-2.2x.1+1^2=\left(2x+1\right)^2\)
\(c,\) ?
\(d,\left(x-y\right)^2-\left(2x-y\right)^2\\ =\left[\left(x-y\right)-\left(2x-y\right)\right]\left[\left(x-y\right)+\left(2x-y\right)\right]\\ =\left(x-y-2x+y\right)\left(x-y+2x-y\right)\\ =\left(-x\right)\left(3x-2y\right)\)
\(e,8x^3-y^3=\left(2x\right)^3-y^3\\ =\left(2x-y\right)\left(4x^2+2xy+y^2\right)\)
\(i,3x+6y+\left(x+2y\right)\\ =3\left(x+2y\right)+\left(x+2y\right)\\ =4\left(x+2y\right)\)
\(j,ax-ay-x+y=\left(ãx-ay\right)-\left(x-y\right)\\ =a\left(x-y\right)-\left(x-y\right)=\left(x-y\right)\left(a-1\right)\)
`k,` `y` hay `y^2` ạ? vì nó mới phân tích được nhân tử.
( 2x - y )3 - 2( 4x3 + 1 ) + 6xy + y3
= 8x3 - 12x2y + 6xy2 - y3 - 8x3 - 2 + 6xy + y3
= 6xy2 + 6xy - 12x2y - 2
=> có phụ thuộc vào biến
\(A=\left(2x+y\right)^2-4x\left(x+y\right)-\left(y-1\right)\left(y+1\right)\)
\(\Rightarrow A=4x^2+4xy+y^2-4x^2-4xy-y^2+1\)
\(\Rightarrow A=1\)
Vậy A không phụ thuộc vào biến