K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Câu 2. [VDT]  Với giá trị nào của m thì 2 đường thẳng y = (2+m)x + 1 và y = 2x + m cắt nhau tại một điểm có hoành độ bằng –2

A. m = 4.              B. m = .                       C.  .                      D. m = .

 

Câu 3. [VDT]  Xác định giá trị của m để đường thẳng y = (m – 3)x + 2 đi qua giao điểm của 2 đường thẳng: y = 3x +1 và y = – x – 3. Kết quả

A. m=3.                B. m = – 3 .                     C. m = 7 .                       D. m = 5.

 

Câu 4. [VDT] Một máy bay bay với vận tốc 170m/s lên cao

 theo phương tạo với đường băng một góc 400. Hỏi sau 6 phút,

 máy bay ở độ cao bao nhiêu mét so với mặt đất?

(kết quả làm tròn đến hàng đơn vị)

A. 39340 m.          B. 39341 m.

C. 39338 m.          D. 39339 m.

 

Câu 5. [TH]  Cho đường tròn (O) có bán kính OA = R. Dây BC của đường tròn vuông góc với OA tại trung điểm của OA. Độ dài dây BC bằng

A. R .                B. .                            C. R .                D. .

 

Câu 6. [VDT] Cho đường tròn (O) có bán kính R = 10cm ngoại tiếp tam giác đều ABC. Độ dài cạnh của tam giác đều bằng

A.  5 cm.           B.  cm.                   C.   cm.          D. 5cm.

 

Câu 7. [VDT] Cho đường tròn (O; 6cm) và dây AB = 8  cm. Đường thẳng qua O vuông góc với AB và cắt tiếp tuyến của đường tròn (O) tại A ở điểm C. Độ dài OC bằng

A. 15cm.               B. 18 cm.              C. 20 cm.              D. 22 cm.

 

Câu 8. [VDT] Cho hai đường tròn (O; 8cm) và (O/; 5cm) tiếp xúc ngoài tại M. Gọi AB là tiếp tuyến chung của hai đường tròn (A  (O); B  (O/)). Tính độ dài AB (kết quả làm tròn đến chữ số thập phân thứ hai).

A. 8.75 cm.           B. 10,85 cm.          C. 12,65 cm.          D. 14,08 cm.

 

Câu 9. [VDC] Cho hai đường tròn bằng nhau (O; R) và (O/; R) cắt nhau tại A và B sao cho tâm đường tròn này nằm trên đường tròn kia. Tính theo R diện tích tứ giác OAO/B

A.  .                B.  .                C.  .                D.  .

 

Câu 10. [VDC] Cho tam giác đều ABC có cạnh bằng 7 cm.

 Gọi R và r lần lượt là bán kính đường tròn ngoại tiếp và bán kính

đường tròn nội tiếp tam giác ABC (như hình vẽ). Tổng R + r bằng

A.  cm.           B.  cm.

C.  cm.             D.  cm.

 

Câu 11. [VDC] Cho hai đường tròn (O; 10cm) và (O/; 6cm) tiếp xúc ngoài tại M. Gọi AB là tiếp tuyến chung của hai đường tròn (A  (O); B  (O/)). Đường thẳng AB cắt đường thẳng OO/ tại C. Độ dài O/C bằng

A. 16cm.               B. 24 cm.              C. 28 cm.              D. 34 cm.

 

Câu 12. [VDC] Cho tam giác ABC có đường tròn nội tiếp tiếp xúc với AB, BC, CA theo thứ tự tại M, N, P; Biết BC = a và chu vi tam giác ABC bằng p. Tính AM theo a và p.

A. AM = p + a.               B. AM = p -2a.              

C. AM = 2p – a.              D. AM =  – a.

 

1

Câu 3: C

Câu 2: A

Câu 4: D

Câu 5: C

Câu 6: B

Câu 7: A

8 tháng 1 2022

còn mấy câu còn lại thì sao

Trên cùng một mặt phẳng tọa độ Oxy cho hai đường thẳng (d) và (D) lần lượt có phương trình là y=2x-5 và y= (m-2)x -m-1 (m là tham số).a) Chứng minh rằng đường thẳng (D) luôn luôn đi qua một điểm cố định thuộc đường thẳng (d) với mọi giá trị của m∈R.b) Tìm giá trị của m để gốc tọa độ O cách đường thẳng (D) một khoảng lớn nhất. Câu 4: (4,0 điểm)Cho đường tròn (O; R) và hai...
Đọc tiếp

Trên cùng một mặt phẳng tọa độ Oxy cho hai đường thẳng (d) và (D) lần lượt có phương trình là y=2x-5 và y= (m-2)x -m-1 (m là tham số).
a) Chứng minh rằng đường thẳng (D) luôn luôn đi qua một điểm cố định thuộc đường thẳng (d) với mọi giá trị của m∈R.
b) Tìm giá trị của m để gốc tọa độ O cách đường thẳng (D) một khoảng lớn nhất. 
Câu 4: (4,0 điểm)
Cho đường tròn (O; R) và hai đường kính phân biệt AB và CD sao cho tiếp tuyến tại A của đường tròn (O; R) cắt các đường thẳng BC và BD lần lượt tại hai điểm E và F. Gọi P và Q lần lượt là trung điểm của các đoạn thẳng AE và AF.
a) Chứng minh rằng trực tâm H của tam giác BPQ là trung điểm của đoạn thẳng OA.
b) Hai đường kính AB và CD có vị trí tương đối như thế nào thì tam giác BPQ có diện tích nhỏ nhất.
Câu 5: (2,0 điểm) Cho a, b, c là các độ dài ba cạnh của một tam giác và thỏa hệ thức a+b+c=1. Chứng minh rằng a2+b2+c2<12.

0
CÂU 1 :tìm giá trị m để đồ thị 3 hàm số : y=(m-1)x+3;y=x-1 và y=2x+3 cắt nhau tại 1 điểm CÂU 2: cho tam giác ABC cân tại A .Vẽ đường tâm D đường kính BC cắt AB,AC lần lượt ở E và F. Các dây BF và CE cắt nhau tại H a)Cho BC=10cm; AB=13cm.tính AD b)chứng minh A,E,H,F thuộc 1 đường tròn .xác định tâm O của đường tròn đó c)chứng minh DE là tiếp tuyến của đường tròn tâm O CÂU 3: cho đường tròn...
Đọc tiếp
CÂU 1 :tìm giá trị m để đồ thị 3 hàm số : y=(m-1)x+3;y=x-1 và y=2x+3 cắt nhau tại 1 điểm CÂU 2: cho tam giác ABC cân tại A .Vẽ đường tâm D đường kính BC cắt AB,AC lần lượt ở E và F. Các dây BF và CE cắt nhau tại H a)Cho BC=10cm; AB=13cm.tính AD b)chứng minh A,E,H,F thuộc 1 đường tròn .xác định tâm O của đường tròn đó c)chứng minh DE là tiếp tuyến của đường tròn tâm O CÂU 3: cho đường tròn (O;R), đường kính AB,dây cung BC=R. a)tính các cạnh và các góc chưa biết của tam giác ABC theo R b)đường thẳng qua O vuông góc vs AC cắt tiếp tuyến tại A của đường tròn (O) ở D.chứng minh OD là đường trung trực của đoạn AC.Tam giác ADC là tam giác gì?Vì sao? c)chứng minh DC là tiếp tuyến của đường tròn (O) CÂU 4:cho 2 đường tròn (O) và (O') tiếp xúc ngoài tại A. kẻ tiếp tuyến chung ngoài BC, B thuộc (O),C thuộc (O').Tiếp tuyến chung trong tại A cắt tiếp tuyến chung ngoài BC ở I a)CMR: GÓC BAC=90 độ b) tính số đo góc OIO' c)tính độ dài BC,biết OA=5cm;O'A=4cm
0
31 tháng 7 2019

Ta có: OA = OB (bán kính)

    OB = BA (tính chất hình thoi).

Nên OA = OB = BA => ΔAOB đều => ∠AOB = 60o

Trong tam giác OBE vuông tại B ta có:

BE = OB.tg∠AOB = OB.tg60o = R.√3

Cho hàm số y = -x² có đổ thị là parabol (P). a) Vẽ parabol (P) trên mặt phẳng tọa độ; b) Viết phương trinh đường thẳng (d), biết rằng (d) cắt parabol (P) tại điểm có hoành độ bằng 2 và cắt trục tung tại điểm có tung độ bằng 1. c) Hãy tìm góc tạo bởi đường thẳng (d) vừa xác định ở câu b) và trục Ox (làm tròn đến độ). Câu 3: (2,0 điểm) Cho phương trình ẩn x, tham số m: x² + (m- 1)x-m 0...
Đọc tiếp

Cho hàm số y = -x² có đổ thị là parabol (P). a) Vẽ parabol (P) trên mặt phẳng tọa độ; b) Viết phương trinh đường thẳng (d), biết rằng (d) cắt parabol (P) tại điểm có hoành độ bằng 2 và cắt trục tung tại điểm có tung độ bằng 1. c) Hãy tìm góc tạo bởi đường thẳng (d) vừa xác định ở câu b) và trục Ox (làm tròn đến độ). Câu 3: (2,0 điểm) Cho phương trình ẩn x, tham số m: x² + (m- 1)x-m 0 a) Chứng minh phương trình luôn có nghiệm với mọi m; b) Tim m để phương trình có hai nghiệm x, X2; X < X2 sao cho x - 2x = -2. Câu 4: (2,0 điểm) Cho đường tròn (0; 6cm) và A là điểm nằm ngoài đường tròn (0) sao cho OA = 10cm. Qua A về các tiếp tuyến AB, AC với đường tròn (0) (B,C là các tiếp điểm); AO cắt BC tại H. a) Chứng minh tứ giác OBAC nội tiếp được; b) Tính độ dài đoạn thẳng BH; c) Vẽ đường kính BD của đường tròn (0). Chứng minh CD I OA

0
Câu 1: a) Cho hàm số y = ax + b, xác định a,b biết đồ thị hàm số đi qua điểm A( -1;2) và song song với đường thẳng y = 2x+3, vẽ đồ thị hàm số với giá trị a, b vừa tìm được b) Cho hàm số : y = mx – m + 2, có đồ thị là đường thẳng (d) Tìm tọa độ điểm cố định mà đường thẳng (d) luôn đi qua với mọi giá trị của m c) Tìm m để đường thẳng d cắt đường thẳng y = 2x -3 tại điểm...
Đọc tiếp

Câu 1: a) Cho hàm số y = ax + b, xác định a,b biết đồ thị hàm số đi qua điểm A( -1;2) và song song với đường thẳng y = 2x+3, vẽ đồ thị hàm số với giá trị a, b vừa tìm được b) Cho hàm số : y = mx – m + 2, có đồ thị là đường thẳng (d) Tìm tọa độ điểm cố định mà đường thẳng (d) luôn đi qua với mọi giá trị của m c) Tìm m để đường thẳng d cắt đường thẳng y = 2x -3 tại điểm nằm trên trục hoành.            Câu 2: Cho đường tròn tâm O đường kính AB. Trên đường tròn lấy điểm C sao cho AC < BC (C khác A). Tiếp tuyến Bx của đường tròn (O) cắt đường trung trực của BC tại D. Gọi F là giao điểm của DO và BC. a) Chứng minh CD là tiếp tuyến của đường tròn (O) b) Gọi E là giao điểm của AD với đường tròn (O) (với E khác A). Chứng minh DE.DA = DC^2 = DF.DO c) Gọi H là hình chiếu của C trên AB, I là giao điểm của AD và CH. Chứng minh I là trung điểm của CH.

0
2 tháng 9 2018

Để học tốt Toán 9 | Giải bài tập Toán 9

a) Bán kính OA vuông góc với BC nên MB = MC.

Lại có MO = MA (gt).

Suy ra tứ giác OBAC là hình bình hành vì có các đường chéo cắt nhau tại trung điểm mỗi đường.

Lại có: OA ⊥ BC nên OBAC là hình thoi.

b) Ta có: OA = OB (bán kính)

    OB = BA (tính chất hình thoi).

Nên OA = OB = BA => ΔAOB đều  = >   ∠ A O B   =   60 °

Trong tam giác OBE vuông tại B ta có:

B E   =   O B . t g ∠ A O B   =   O B . t g 60 °   =   R . √ 3

7 tháng 11 2016

Bài 2 nếu ai giải được thì làm ơn gửi cho mình cách giải nhé!!Mình cũng có bài này mà ko giải được

3 tháng 2 2017

gõ sai ND kìa

Câu 1: Cho (O;R) và điểm A nằm ngoài đường tròn (O). Vẽ 2 tiếp tuyến AB, AC của (O) (B,C: tiếp điểm). Vẽ cát tuyến ADE của (O); D nằm giữa D & E; tia AD nằm giữa 2 tia AB và AO.a) Gọi H là giao điểm của OA và BC. C/m: DEOH nội tiếpb) Đường thẳng AO cắt (O) tại M và N (M nằm giữa A và O). C/m: EH.AD= MH.ANCâu 2: Cho nửa đường tròn tâm (O;R) đường kính AB và điểm C trên đường tròn sao cho CA=CB. Gọi M...
Đọc tiếp

Câu 1: Cho (O;R) và điểm A nằm ngoài đường tròn (O). Vẽ 2 tiếp tuyến AB, AC của (O) (B,C: tiếp điểm). Vẽ cát tuyến ADE của (O); D nằm giữa D & E; tia AD nằm giữa 2 tia AB và AO.

a) Gọi H là giao điểm của OA và BC. C/m: DEOH nội tiếp

b) Đường thẳng AO cắt (O) tại M và N (M nằm giữa A và O). C/m: EH.AD= MH.AN

Câu 2: Cho nửa đường tròn tâm (O;R) đường kính AB và điểm C trên đường tròn sao cho CA=CB. Gọi M là trung điểm của dây cung AC. Nối BM cắt cung AC tại E; AE và BC kéo dài cắt nhau tại D.

a) C/m: MOCD là hình bình hành

b) Vẽ đường tròn tâm E bán kính EA cắt (O) tại điểm thứ 2 là N. Kẻ EF vuông góc với AC, EF cắt AN tại I, cắt (O) tại điểm thứ 2 là K; EB cắt AN tại H. C/m: BHIK nội tiếp.

Câu 3: Cho (O;R). Từ điểm S nằm ngoài đường tròn sao cho SO=2R. Vẽ tiếp tuyến SA,SB (A,B là tiếp tuyến). Vẽ cát tuyến SDE (D nằm giữa S và E), điểm O nằm trong góc ESB. Từ O kẻ đường vuông góc với OA cắt SB tại M. Gọi I là giao điểm của OS và (O).

a) C/m: MI là tiếp tuyến của (O)

b) Qua D kẻ đường vuông góc với OB cắt AB tại H và EB tại K. C/m: H là trung điểm của DK.

0
8 tháng 3 2018
là câu a
8 tháng 3 2018

Ta có: ^BIC = 90o (do chắn đk BC) 
mà ^OMD = 90o (do DE _|_AB) 
=> tg BDMI nội tiếp