Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c. Dễ chứng minh 5 điểm A, N, F, H, E cùng thuộc đường tròn đường kính AH.
\(\Rightarrow HN\perp AN\left(1\right)\)
Vẽ đường kính AM của (O) \(\Rightarrow MN\perp AN\left(2\right)\)
Từ (1), (2) suy ra 3 điểm M, H, N thẳng hàng (3)
Dễ chứng minh BHCM là hình bình hành (BH // CM do cùng vuông góc với AC, tương tự 2 cạnh còn lại)
\(\Rightarrow\) 3 điểm H, I, M thẳng hàng (4)
Từ (3), (4) suy ra 3 điểm N, H, I thẳng hàng.
Lời giải:
Nói đơn giản thế này. Khi đề cho: Cho đồ thị hàm số $y=x+2$
- Hàm số: chính là $y=x+2$, biểu diễn mối quan hệ giữa biến $x$ và biến $y$. Hàm số hiểu đơn giản giống như phép biểu diễn mối quan hệ giữa hai biến.
- Đồ thị hàm số (hay đồ thị): Khi có hàm số rồi, người ta muốn biểu diễn nó trên mặt phẳng tọa độ ra được 1 hình thù nào đó thì đó là đồ thị hàm số. Ví dụ, đths $y=x+2$ có dạng như thế này:
- Tọa độ giao điểm của hai đồ thị: Khi ta vẽ được đồ thị trên mặt phẳng tọa độ, 2 đồ thị đó giao nhau ở vị trí nào thì đó chính là tọa độ giao điểm. Ví dụ, trên mp tọa độ ta có 2 đồ thị $y=-2x+3$ và $y=x+6$ chả hạn. Điểm $A$, có tọa độ $(-1,5)$ chính là giao điểm. Như vậy, $(-1,5)$ là tọa độ giao điểm.
- Nhìn hình vẽ của đồ thị chỉ giúp ta có cái nhìn trực quan hơn. Khi muốn tìm giao điểm của 2 đồ thị hàm số, người ta thường dùng hàm số để tìm cho nhanh, vì hàm số biểu diễn mối quan hệ giữa hai biến một cách "số hóa" hơn.
- Với nhiều hàm số trở lên thì ta cứ xét từng cặp 1 thôi.
\(\sqrt{\left(1-\sqrt{2}\right)^2}\sqrt{\left(1+\sqrt{2}\right)^2}\)
\(=\sqrt{\left(1-\sqrt{2}\right)^2\left(1+\sqrt{2}\right)^2}\)
\(=\sqrt{\left(1-2\right)^2}=\sqrt{\left(-1\right)^2}=1\)
Câu 21: D
Câu 15: \(=\sqrt{3}-1+\sqrt{3}+1=2\sqrt{3}\)
Câu 11: \(=\dfrac{\sqrt{3}\left(\sqrt{3}+1\right)}{6}=\dfrac{3+\sqrt{3}}{6}\)
\(ĐK:\dfrac{2}{3x+5}\ge0\Leftrightarrow3x+5\ge0\left(2>0\right)\Leftrightarrow x\ge-\dfrac{5}{3}\)
\(ĐKXĐ:\left\{{}\begin{matrix}\dfrac{2}{3x+5}\ge0\\3x+5\ne0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}3x+5\ge0\\x\ne-\dfrac{5}{3}\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x\ge-\dfrac{5}{3}\\x\ne-\dfrac{5}{3}\end{matrix}\right.\\ \Leftrightarrow x>-\dfrac{5}{3}\)
không phải đâu ngọc
1+1=2 trong tiếng Anh là one plus one equal two.
Câu II:
1: Thay m=3 vào y=(m-2)x+3, ta được:
\(y=\left(3-2\right)x+3=x+3\)
*Vẽ đồ thị:
2: Để (d1) cắt (d2) tại một điểm trên trục tung thì:
\(\left\{{}\begin{matrix}m-2\ne-1\\m^2+2=3\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m\ne1\\m^2=1\end{matrix}\right.\)
=>m=-1
3: (d1): y=(m-2)x+3
=>(m-2)x-y+3=0
Khoảng cách từ O(0;0) đến (d1) là:
\(d\left(O;\left(d1\right)\right)=\dfrac{\left|0\left(m-2\right)+0\cdot\left(-1\right)-3\right|}{\sqrt{\left(m-2\right)^2+\left(-1\right)^2}}\)
\(=\dfrac{3}{\sqrt{\left(m-2\right)^2+1}}\)
Để d(O;(d1))=3/2 thì \(\dfrac{3}{\sqrt{\left(m-2\right)^2+1}}=\dfrac{3}{2}\)
=>\(\sqrt{\left(m-2\right)^2+1}=2\)
=>(m-2)2+1=4
=>(m-2)2=3
=>\(m-2=\pm\sqrt{3}\)
=>\(m=\pm\sqrt{3}+2\)