Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
a) Ta có: \(A=\dfrac{4}{n-1}+\dfrac{6}{n-1}-\dfrac{3}{n-1}\)
\(=\dfrac{4+6-3}{n-1}\)
\(=\dfrac{7}{n-1}\)
Để A là số tự nhiên thì \(7⋮n-1\)
\(\Leftrightarrow n-1\inƯ\left(7\right)\)
\(\Leftrightarrow n-1\in\left\{1;7\right\}\)
hay \(n\in\left\{2;8\right\}\)
Vậy: \(n\in\left\{2;8\right\}\)
ta có B=2n+9/n+2-3n+5n+1/n+2=4n+10/n+2 Để B là STN thì 4n+10⋮n+2 4n+8+2⋮n+2 4n+8⋮n+2 ⇒2⋮n+2 n+2∈Ư(2) Ư(2)={1;2} Vậy n=0
Bài 3
\(\dfrac{55}{23}+\dfrac{-22}{23}\le x\le\dfrac{1}{5}-\dfrac{-1}{6}+\dfrac{79}{30}\)
\(=\dfrac{33}{23}\)\(\le x\le\dfrac{90}{30}\)
\(=\dfrac{33}{23}\le x\le3\)
Mà \(x\in Z\) \(\Rightarrow\)\(x=2\)
Có 1 giá trị thỏa mãn
Chọn A
Bài 4
\(\dfrac{-11}{12}< \dfrac{5}{x}< \dfrac{-11}{15}\)
Chọn D
Bài 5
\(M=\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{99\cdot100}\)
\(M=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{99}+\dfrac{1}{99}-\dfrac{1}{100}\)
\(M=1-\dfrac{1}{100}\)
\(M=\dfrac{100}{100}-\dfrac{1}{100}\)
\(M=\dfrac{99}{100}\)
CHọn C
bài 2:
\(A=9.\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{98.99}+\dfrac{1}{99.100}\right)\)
\(A=9.\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{98}-\dfrac{1}{99}+\dfrac{1}{99}-\dfrac{1}{100}\right)\)
\(A=9.\left(1-\dfrac{1}{100}\right)=9.\left(\dfrac{100}{100}-\dfrac{1}{100}\right)=\dfrac{891}{100}\)
bài 3:
\(=>\dfrac{x}{3}=\dfrac{5}{8}+\dfrac{1}{8}=\dfrac{8}{8}=1=\dfrac{3}{3}\)
\(=>x=3\)
7) \(\dfrac{-5}{17}+\dfrac{3}{17}\le\dfrac{x}{17}\le\dfrac{13}{17}+\dfrac{-11}{17}\)
\(\Rightarrow\dfrac{-2}{17}\le\dfrac{x}{17}\le\dfrac{2}{17}\)
\(\Rightarrow-2\le x\le2\)
\(\Rightarrow x\in\left\{-2;-1;0;1;2\right\}\)
8) \(\dfrac{2}{3}\left(\dfrac{1}{2}+\dfrac{3}{4}-\dfrac{1}{3}\right)\le\dfrac{x}{18}\le\dfrac{7}{3}\left(\dfrac{1}{2}-\dfrac{1}{6}\right)\)
\(\Rightarrow\dfrac{2}{3}\left(\dfrac{6}{12}+\dfrac{9}{12}-\dfrac{4}{12}\right)\le\dfrac{x}{18}\le\dfrac{7}{3}\left(\dfrac{6}{12}-\dfrac{2}{12}\right)\)
\(\Rightarrow\dfrac{2}{3}\cdot\dfrac{11}{12}\le\dfrac{x}{18}\le\dfrac{7}{3}\cdot\dfrac{4}{12}\)
\(\Rightarrow\dfrac{22}{36}\le\dfrac{x}{18}\le\dfrac{28}{36}\)
\(\Rightarrow\dfrac{11}{18}\le\dfrac{x}{18}\le\dfrac{14}{18}\)
\(\Rightarrow x\in\left\{11;12;13;14\right\}\)
8) \(\dfrac{2}{3}\left(\dfrac{1}{2}+\dfrac{3}{4}-\dfrac{1}{3}\right)\le\dfrac{x}{18}\le\dfrac{7}{3}\left(\dfrac{1}{2}-\dfrac{1}{6}\right)\\ \dfrac{2}{3}\left(\dfrac{6}{12}+\dfrac{9}{12}-\dfrac{4}{12}\right)\le\dfrac{x}{18}\le\dfrac{7}{3}\left(\dfrac{3}{6}-\dfrac{1}{6}\right)\\ \dfrac{2}{3}.\dfrac{11}{12}\le\dfrac{x}{18}\le\dfrac{7}{3}.\dfrac{2}{6}\\ \dfrac{11}{18}\le\dfrac{x}{18}\le\dfrac{14}{18}\\ \Rightarrow11\le x\le14\\ \Rightarrow x\in\left\{11;12;13;14\right\}\)
b: =>\(\dfrac{2}{2}+\dfrac{2}{6}+\dfrac{2}{12}+...+\dfrac{2}{n\left(n+1\right)}=\dfrac{200}{101}\)
=>\(\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+...+\dfrac{1}{n\left(n+1\right)}=\dfrac{100}{101}\)
=>1-1/2+1/2-1/3+...+1/n-1/n+1=100/101
=>1-1/(n+1)=100/101
=>1/(n+1)=1/101
=>n+1=101
=>n=100
c) \(\dfrac{x+1}{35}+\dfrac{x+2}{34}+\dfrac{x+3}{33}=\dfrac{x+4}{32}+\dfrac{x+5}{31}+\dfrac{x+6}{30}\)
\(\Rightarrow\dfrac{x+1}{35}+1+\dfrac{x+2}{34}+1+\dfrac{x+3}{33}+1=\dfrac{x+4}{32}+1+\dfrac{x+5}{31}+1+\dfrac{x+6}{30}+1\)
\(\Rightarrow\dfrac{x+1+35}{35}+\dfrac{x+2+34}{34}+\dfrac{x+3+33}{33}=\dfrac{x+4+32}{32}+\dfrac{x+5+31}{31}+\dfrac{x+6+30}{30}\)
\(\Rightarrow\dfrac{x+36}{35}+\dfrac{x+36}{34}+\dfrac{x+36}{33}=\dfrac{x+36}{32}+\dfrac{x+36}{31}+\dfrac{x+36}{30}\)
\(\Rightarrow\dfrac{x+36}{35}+\dfrac{x+36}{34}+\dfrac{x+36}{33}-\dfrac{x+36}{32}-\dfrac{x+36}{31}-\dfrac{x+36}{30}=0\)
\(\Rightarrow\left(x+36\right)\left(\dfrac{1}{35}+\dfrac{1}{34}+\dfrac{1}{33}+\dfrac{1}{32}+\dfrac{1}{31}+\dfrac{1}{30}\right)=0\)
\(\Rightarrow x+36=0\left(\text{vì }\dfrac{1}{35}+\dfrac{1}{34}+\dfrac{1}{33}+\dfrac{1}{32}+\dfrac{1}{31}+\dfrac{1}{30}\ne0\right)\)
\(\Rightarrow x=-36\)
Vậy ...
a/ Ta có: \(-4\dfrac{3}{5}.2\dfrac{4}{3}\le x\le-2\dfrac{3}{5}:1\dfrac{6}{15}\)
\(\Rightarrow\dfrac{-23}{5}.\dfrac{10}{3}\le x\le\dfrac{-13}{5}:\dfrac{21}{15}\)
\(\Rightarrow\dfrac{-46}{3}\le x\le\dfrac{-13}{5}.\dfrac{15}{21}\)
\(\Rightarrow\dfrac{-46}{3}\le x\le\dfrac{-13}{7}\)
\(\Rightarrow-15,\left(3\right)\le x\le-1,\left(857142\right)\)
Vì x \(\in\) Z nên x \(\in\left\{-1;-2;-3;...;-15\right\}\)
Chúc bạn học tốt!!!
Bài 10:
a: Để A là phân số thì n+2<>0
hay n<>-2
b: Khi n=0 thì A=3/2
Khi n=2 thì A=3/(2+2)=3/4
Khi n=-7 thì A=3/(-7+2)=-3/5
Bài 9:
1)9/x = -35/105 2) 12/5 = 32/x 3)x/2 = 32/x x = 9. (-35)/105 x.12/5 = x.32/x 2x.x/2 = 2x.32/x
x = -3 x.12/5=32 xx = 2.32
x= 32:12/5 x^2 = 2.32
x = 40/3 x^2 = 64
x = 8
4) x-2/4 = x-1/5
5(x-2) = 4(x-1)
5x - 10 = 4x - 4
5x - 4x = 10 - 4
x = 6
Bài 10:Cho biểu thức A=3/n+2
a) Để A là phân số thì mẫu số phải khác 0
Do đó: n + 2 ≉ 0. Suy ra: n ≉ -2
b) Khi n = 0 thì A = 3/0+2 = 3/2
Khi n = 2 thì A = 3/2+2 = 3/4
Khi n = -7 thì A = 3/-7+2 = 3/-5
\(1)\dfrac{1}{5}+\dfrac{2}{30}+\dfrac{121}{156}\le x\le\dfrac{1}{2}+\dfrac{156}{72}+\dfrac{1}{3}\)
\(\dfrac{156}{780}+\dfrac{26}{780}+\dfrac{605}{780}\le x\le\dfrac{3}{6}+\dfrac{13}{6}+\dfrac{2}{6}\)
\(\dfrac{787}{780}\le x\le2\)
\(\Rightarrow x\in\left\{2\right\}\)
Câu 2:
\(N=\dfrac{2a+9+5a+17-3a-4a-23}{a+3}=\dfrac{3}{a+3}\)
Để N là số tự nhiên thì \(\left\{{}\begin{matrix}a>-3\\a+3\in\left\{1;-1;3;-3\right\}\end{matrix}\right.\Leftrightarrow a\in\left\{-2;0\right\}\)