Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(2x + 3)2=4x2+12x+9
=>hệ số của hạng tử bậc nhất khi khai triển là 12
mk nha
\(P=14-\left(2x-5\right)^2\)
Vì: \(-\left(2x-5\right)^2\le0\)
=> \(14-\left(2x-5\right)^2\le14\)
Dấu bằng xảy ra khi \(2x-5=0\Leftrightarrow x=2,5\)
Vậy GTLN của P la 14 khi x=2,5
\(1.\)
\(-17-\left(x-3\right)^2\)
Ta có: \(\left(x-3\right)^2\ge0\)với \(\forall x\)
\(\Leftrightarrow-\left(x-3\right)^2\le0\)với \(\forall x\)
\(\Leftrightarrow17-\left(x-3\right)^2\le17\)với \(\forall x\)
Dấu '' = '' xảy ra khi:
\(\left(x-3\right)^2=0\)
\(\Leftrightarrow x-3=0\)
\(\Leftrightarrow x=3\)
Vậy \(Max=-17\)khi \(x=3\)
\(2.\)
\(A=x\left(x+1\right)+\frac{3}{2}\)
\(A=x^2+x+\frac{3}{2}\)
\(A=\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\)
\(\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\ge\frac{5}{4}\)với \(\forall x\)
\(\Leftrightarrow\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\ge\frac{5}{4}\)với \(\forall x\)
Vậy \(Max=\frac{5}{4}\)khi \(x=\frac{-1}{2}\)
sai ở câu 4 vì (4x2 - 9) : (2x + 3) = (2x - 3) không dư nên đáp án phải là 0
k cho mình nhé
Câu 5 sai rồi vì nếu x=2 thì đẳng thức x^2 -8x +15 sẽ bằng 3 nên x phải bằng 3
caau1: (2x +3)2 = 4x2 + 12x + 9
hệ số .....là 12
caau2. hệ số ....là -36
câu 3. 2x - 5 = 0
x = 5/2 = 2,5
mk thi lâu rồi 300đ