Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tham khao:
Câu 19: Gọi số tự nhiên cần tìm là A
Chia cho 29 dư 5 nghĩa là: A = 29p + 5 ( p ∈ N )
Tương tự: A = 31q + 28 ( q ∈ N )
Nên: 29p + 5 = 31q + 28 => 29(p - q) = 2q + 23
Ta thấy: 2q + 23 là số lẻ => 29(p – q) cũng là số lẻ =>p – q >=1
Theo giả thiết A nhỏ nhất => q nhỏ nhất (A = 31q + 28)
=>2q = 29(p – q) – 23 nhỏ nhất
=> p – q nhỏ nhất
Do đó p – q = 1 => 2q = 29 – 23 = 6
=> q = 3
Vậy số cần tìm là: A = 31q + 28 = 31. 3 + 28 = 121
Câu 20: Để tìm tập hợp con của A ta chỉ cần tìm số ước của 154
Ta có:154 = 2 x 7 x 11
Số ước của 154 là : ( 1 + 1 ) x ( 1 + 1 ) x ( 1 + 1 ) = 8 ( ước )
Số tập hợp con của tập hợp A là:
2n trong đó n là số phần tử của tập hợp A
=> 2n = 28 = 256 ( tập hợp con )
Trả lời: A có 256 tập hợp con
Câu 21:
a | b | c |
4 | 6 | 15 va 45 |
câu 1:
126:a dư 25=>a\(\ne0;1;126\)
=>126-25=101 chia hết cho a
Mà:101=1.101
=>a=1(loại)
=>a=101(thỏa mãn)
vậy a=101
bài 2:
có số các số tự nhiên có 4 chữ số là:
(9999-1000):1+1=9000(số)
có số các số chẵn có 3 chữ số là:
(998-100):2+1=450(số)
vậy số tự nhiên có 4 chỡ số là:9000
số chẵn có 3 chữ số là:450
câu 3:
Gọi số tự nhiên cần tìm là A
chia cho 29 dư 5 nghĩa là:A =29p+5\((p\inℕ)\)
tương tự:A=31q+28\((q\inℕ)\)
Nên 29p+5=31q+28=>29(p-q)cũng là số lẽ =>p-q>1
theo giả thiết A nhỏ nhất=>q nhỏ nhất (A=31+28)
=>2q=29(p-q)-23 nhỏ nhất
=>p-q nhỏ nhất
Do đó p-q=1=>2q=29-23=6
=>q=3
vậy số cần tìm là:A=31q+28=31.3+28=121
câu 4:
ta có 154=2.7.11
số ước của 154 là:(1+1).(1+1).(1+1)=8(ước)
số tập hợp con của tập hợp A là:
2 trong số n là số phần tử của tập hợp A
=>2=28=256(tập hợp con)
vậy 256 là tập hợp con của A
gội số tự nhiên cần tìm là a
chia 29 dư 5 nghĩa là : a = 29p + 5 (p \(\in\) N)
Tương tự: a = 31q + 28 (q \(\in\) N)
Nên : 29p + 5 = 31q + 28 => 29(p - q) = 2q + 23
Ta thấy: 2q + 33 là số lẻ => 29(p - q) cũng là số lẻ
=> p - q \(\ge\) 1
Theo giả thiết a nhỏ nhất => q nhỏ nhất (a = 31q + 28)
=> 2q = 29(p - q) - 23 nhỏ nhất
=> p - q nhỏ nhất
Do đó p - q = 1 => 2q = 29 - 23 = 6
=> q = 3
Cách 1:
Nếu chia hết cho 29 thì chia cho 31 dư \(28-5=23\)
Hiệu của 31 và 29: \(31-29=2\)
Thương của phép chia cho 31 là:
\(\frac{\left(29-23\right)}{2}=3\)
(Hoặc gọi a là thương lúc này của phép chia cho 31).
\(2.a+23=29\Rightarrow a=3\)
Số cần tìm là:
\(31.3+28=121\)
Đáp số: \(121\)
Gọi số tự nhiên cần tìm là A
Chia cho 29 dư 5 nghĩa là: A = 29p + 5 ( p ∈ N )
Tương tự: A = 31q + 28 ( q ∈ N )
Nên: 29p + 5 = 31q + 28 => 29(p - q) = 2q + 23
Ta thấy: 2q + 23 là số lẻ => 29(p – q) cũng là số lẻ =>p – q >=1
Theo giả thiết A nhỏ nhất => q nhỏ nhất (A = 31q + 28)
=>2q = 29(p – q) – 23 nhỏ nhất
=> p – q nhỏ nhất
Do đó p – q = 1 => 2q = 29 – 23 = 6
=> q = 3
Vậy số cần tìm là: A = 31q + 28 = 31. 3 + 28 = 121
tick nha
a)Chia cho 29 dư 5 nghĩa là: A = 29p + 5 ( p ∈ N )
Tương tự: A = 31q + 28 ( q ∈ N )
Nên: 29p + 5 = 31q + 28 => 29(p - q) = 2q + 23
Ta thấy: 2q + 23 là số lẻ => 29(p – q) cũng là số lẻ =>p – q >=1
Theo giả thiết A nhỏ nhất => q nhỏ nhất (A = 31q + 28)
=>2q = 29(p – q) – 23 nhỏ nhất
=> p – q nhỏ nhất
Do đó p – q = 1 => 2q = 29 – 23 = 6
=> q = 3
b)126: a dư 25=>a khác 0 ; 1;126
=>126-25=101 chia hết cho a
Mà 101=1.101
=>a=1(L) hoặc a=101(TM)
Vậy a=101
gọi số cần tìm là A :
chia cho 29 dư 5
A = 29 x p + 5 ( p \(\in\)N )
A = 31 x q + 28 ( q \(\in\)N )
nên :
29 x p + 5 = 31 x q + 28
=> 29 x ( p - q ) = 2 x q + 23
ta có :
2 x q + 23 là số lẻ
=> 29 x ( p - q ) là số lẻ
vậy p - q = 1
theo giả thiết phải tìm A nhỏ nhất :
=> 2q = 29 x ( p - q ) - 23 nhỏ nhất
=> q nhỏ nhất ( A = 31 x q + 28 )
=> p - q nhor nhất
suy ra : 2 x q = 29 x 1 - 23 = 6
=> q = 6 : 2 = 3
vậy số cần tìm là : A = 31 x q + 28 =31 x 3 + 28 = 131
Bài này mình làm rồi :
Gọi số tự nhiên cần tìm là A
Chia cho 29 dư 5 nghĩa là: A = 29p + 5 ( p ∈ N )
Tương tự: A = 31q + 28 ( q ∈ N )
Nên: 29p + 5 = 31q + 28=> 29(p - q) = 2q + 23
Ta thấy: 2q + 23 là số lẻ => 29(p – q) cũng là số lẻ ==>p – q >=1
Theo giả thiết A nhỏ nhất => q nhỏ nhất (A = 31q + 28)
=>2q = 29(p – q) – 23 nhỏ nhất
=> p – q nhỏ nhất
Do đó p – q = 1 => 2q = 29 – 23 = 6
=> q = 3
Vậy số cần tìm là: A = 31q + 28 = 31. 3 + 28 = 121
Câu 19: Gọi số tự nhiên cần tìm là A
Chia cho 29 dư 5 nghĩa là: A = 29p + 5 ( p ∈ N )
Tương tự: A = 31q + 28 ( q ∈ N )
Nên: 29p + 5 = 31q + 28 => 29(p - q) = 2q + 23
Ta thấy: 2q + 23 là số lẻ => 29(p – q) cũng là số lẻ =>p – q >=1
Theo giả thiết A nhỏ nhất => q nhỏ nhất (A = 31q + 28)
=>2q = 29(p – q) – 23 nhỏ nhất
=> p – q nhỏ nhất
Do đó p – q = 1 => 2q = 29 – 23 = 6
=> q = 3
Vậy số cần tìm là: A = 31q + 28 = 31. 3 + 28 = 121
Câu 20: Để tìm tập hợp con của A ta chỉ cần tìm số ước của 154
Ta có:154 = 2 x 7 x 11
Số ước của 154 là : ( 1 + 1 ) x ( 1 + 1 ) x ( 1 + 1 ) = 8 ( ước )
Số tập hợp con của tập hợp A là:
2n trong đó n là số phần tử của tập hợp A
=> 2n = 28 = 256 ( tập hợp con )
Trả lời: A có 256 tập hợp con
HT~~
(UwU đang xem bóng đá hay vc)
Câu 19: Gọi số tự nhiên cần tìm là A
Chia cho 29 dư 5 nghĩa là: A = 29p + 5 ( p ∈ N )
Tương tự: A = 31q + 28 ( q ∈ N )
Nên: 29p + 5 = 31q + 28 => 29(p – q) = 2q + 23
Ta thấy: 2q + 23 là số lẻ => 29(p – q) cũng là số lẻ =>p – q >=1
Theo giả thiết A nhỏ nhất => q nhỏ nhất (A = 31q + 28)
=>2q = 29(p – q) – 23 nhỏ nhất
=> p – q nhỏ nhất
Do đó p – q = 1 => 2q = 29 – 23 = 6
=> q = 3
Vậy số cần tìm là: A = 31q + 28 = 31. 3 + 28 = 121
Câu 20: Để tìm tập hợp con của A ta chỉ cần tìm số ước của 154
Ta có: 154 = 2 x 7 x 11
Số ước của 154 là : ( 1 + 1 ) x ( 1 + 1 ) x ( 1 + 1 ) = 8 ( ước )
Số tập hợp con của tập hợp A là:
2n trong đó n là số phần tử của tập hợp A
=> 2n = 28 = 256 ( tập hợp con )
Trả lời: A có 256 tập hợp con
Bn tham khảo cách làm nhé!
~ Hc tốt!!!