Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1:
a) 2x(3x+2) - 3x(2x+3) = 6x^2+4x - 6x^2-9x = -5x
b) \(\left(x+2\right)^3+\left(x-3\right)^2-x^2\left(x+5\right)\)
\(=x^3+6x^2+12x+8+x^2-6x+9-x^3-5x^2\)
\(=2x^2+6x+17\)
c) \(\left(3x^3-4x^2+6x\right)\div\left(3x\right)=x^2-\dfrac{4}{3}x+2\)
Bài 3
a) 2x(x - 3) - x + 3 = 0
2x(x - 3) - (x - 3) = 0
(x - 3)(2x - 1) = 0
x - 3 = 0 hoặc 2x - 1 = 0
*) x - 3 = 0
x = 3
*) 2x - 1 = 0
2x = 1
x = 1/2
Vậy x = 1/2; x = 3
b) (3x - 1)(2x + 1) - (x + 1)² = 5x²
6x² + 3x - 2x - 1 - x² - 2x - 1 - 5x² = 0
(6x² - x² - 5x²) + (3x - 2x - 2x) = 0 + 1 + 1
-x = 2
x = -2
Bài 2
a) 5x² + 30y
= 5(x² + 6y)
b) x³ - 2x² - 4xy² + x
= x(x² - 2x - 4y² + 1)
= x[(x² - 2x + 1) - 4y²]
= x[(x - 1)² - (2y)²]
= x(x - 1 - 2y)(x - 1 + 2y)
Bài 1:
\(a,=3x\left(3xy+5y-1\right)\\ b,=\left(z-2\right)\left(3z-5\right)\\ c,=\left(x+2y\right)^2-4z^2=\left(x+2y+2z\right)\left(x+2y-2z\right)\\ d,=x^2-3x+5x-15=\left(x-3\right)\left(x+5\right)\)
Bài 2:
\(a,\Leftrightarrow x\left(x-4\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\end{matrix}\right.\\ b,\Leftrightarrow2x+2-4x^2-12x=9\\ \Leftrightarrow4x^2+10x+7=0\\ \Leftrightarrow4\left(x^2+\dfrac{5}{2}x+\dfrac{25}{16}\right)+\dfrac{3}{4}=0\\ \Leftrightarrow4\left(x+\dfrac{5}{6}\right)^2+\dfrac{3}{4}=0\left(vô.lí\right)\\ \Leftrightarrow x\in\varnothing\\ c,\Leftrightarrow x^2-12x+36=0\\ \Leftrightarrow\left(x-6\right)^2=0\\ \Leftrightarrow x=6\)
câu 1.
P= 2(x+y)(x-y)+(x-y)^2+(x+y)^2-4y^2
P= (x+y+x-y)^2-(2y)^2
P=(2x-2y)(2x+2y)
P=4(x^2-y^2)
câu 2.
a, x^3-2x^2-4xy^2+x= x(x^2-2x+1)-4xy^2
=x(x-1)^2-4xy^2
=x(x-1-2y)(x-1+2y)
b, (x+1)(x+2)(x+3)(x+4)-24= (x^2+5x+4)(x^2+5x+6)-24
Đặt x^2+5x+4= a
Lúc đó: (x+1)(x+2)(x+3)(x+4)-24= a(a+2)-24
= a^2+2a-24
=a^2+2a+1-25
= (a+1)^2-5^2
= (a+1-5)(a+1+5)
= (a-4)(a+6)
mà ta đặt x^2+5x+4=a => (x+1)(x+2)(x+3)(x+4)-24= (x^2+5x+4-4)(x^2+5x+4+6)
= (x^2+5x)(x^2+5x+10)
câu3. (x+2)^2= 4-x^2
=> (x+2)^2-4+x^2=0
=>. (x+2)^2-(2-x)(2+x)=0
=> (x+2)(x+2-2+x)=0
=> (x+2)2x=0
=> x+2=0 hoặc 2x=0
=> x=-2 hoặc x=0
1)P=2(x^2-y^2)+x^2-2xy+y^2+x^2+2xy+y^2-4y^2=2x^2-2y^2+2x^2+2y^2-4y^2=4x^2-4y^2 . 3) <=> x^2+4x+4-4+x^2=0
<=> 2x^2+4x=0 <=>2x(x+2)=0 <=>2x=0 hay x+2=0 <=>x=0 hay x=-2
Bài 3
a) x² + 10x + 25
= x² + 2.x.5 + 5²
= (x + 5)²
b) 8x - 16 - x²
= -(x² - 8x + 16)
= -(x² - 2.x.4 + 4²)
= -(x - 4)²
c) x³ + 3x² + 3x + 1
= x³ + 3.x².1 + 3.x.1² + 1³
= (x + 1)³
d) (x + y)² - 9x²
= (x + y)² - (3x)²
= (x + y - 3x)(x + y + 3x)
= (y - 2x)(4x + y)
e) (x + 5)² - (2x - 1)²
= (x + 5 - 2x + 1)(x + 5 + 2x - 1)
= (6 - x)(3x + 4)
Bài 4
a) x² - 9 = 0
x² = 9
x = 3 hoặc x = -3
b) (x - 4)² - 36 = 0
(x - 4 - 6)(x - 4 + 6) = 0
(x - 10)(x + 2) = 0
x - 10 = 0 hoặc x + 2 = 0
*) x - 10 = 0
x = 10
*) x + 2 = 0
x = -2
Vậy x = -2; x = 10
c) x² - 10x = -25
x² - 10x + 25 = 0
(x - 5)² = 0
x - 5 = 0
x = 5
d) x² + 5x + 6 = 0
x² + 2x + 3x + 6 = 0
(x² + 2x) + (3x + 6) = 0
x(x + 2) + 3(x + 2) = 0
(x + 2)(x + 3) = 0
x + 2 = 0 hoặc x + 3 = 0
*) x + 2 = 0
x = -2
*) x + 3 = 0
x = -3
Vậy x = -3; x = -2
\(x^2\left(y-1\right)-4\left(y-1\right)\\ =\left(y-1\right)\left(x^2-4\right)=\left(y-1\right)\left(x-2\right)\left(x+2\right)\)
\(a,5\left(x-y\right)-3x\left(y-x\right)=5\left(x-y\right)+3x\left(x-y\right)=\left(5+3x\right)\left(x-y\right)\\ b,x^2-4xy+4y^2=\left(x-2y\right)^2\\ c,\left(x+1\right)^2+x\left(5-x\right)=0\\ \Rightarrow x^2+2x+1+5x-x^2=0\\ \Rightarrow7x+1=0\\ \Rightarrow7x=-1\\ \Rightarrow x=-\dfrac{1}{7}\)
a: =(x-y)(5+3x)
c: \(\Leftrightarrow x^2-2x+1+5x-x^2=0\)
hay x=-1/3