K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 11 2021

Tham khảo

 

a, Xét ΔABC có

{M là trung điểm của BCF là trung điểm của AC{M là trung điểm của BCF là trung điểm của AC

⇒ MF là đường trung bình của ΔABC

⇒ ⎧⎨⎩MF // ABMF = 12AB{MF // ABMF = 12AB

Vì MF // AB ⇒ MF // AE

Vì E là trung điểm của AB

⇒ AE = EB = 1212

Như vậy ⎧⎪ ⎪⎨⎪ ⎪⎩MF = 12ABAE = 12AB{MF = 12ABAE = 12AB

⇒ MF = AE

Tứ giác AEMF có

{MF // AEMF = AE{MF // AEMF = AE

⇒ Tứ giác AEMF là hình bình hành (đpcm)

b, Vì D đối xứng với H qua F

⇒ F là trung điểm của DH

Tứ giác AHCD có

⎧⎪⎨⎪⎩Đường chéo AC, DHF là trung điểm của ACF là trung điểm của DH{Đường chéo AC, DHF là trung điểm của ACF là trung điểm của DH

⇒ Tứ giác AHCD là hình bình hành (1)

Vì AH ⊥ BC

⇒ ˆAHB=ˆAHC=900AHB^=AHC^=900 (2)

Từ (1), (2) ⇒ Tứ giác AHCD là hình chữ nhật (hình bình hành có một góc vuông)(đpcm)

c, Xét ΔABC có

{E là trung điểm của ABF là trung điểm của AC{E là trung điểm của ABF là trung điểm của AC

⇒ EF là đường trung bình của ΔABC

⇒ EF // BC

⇒ HM // EF

⇒ Tứ giác EHMF là hình thang (3)

Vì F là trung điểm của AC

⇒ HF là đường trung tuyến của ΔAHC

Vì ˆAHC=900AHC^=900

⇒ ΔAHC vuông tại H

Vì : {ΔAHC vuông tại HHF là đường trung tuyến của ΔAHC{ΔAHC vuông tại HHF là đường trung tuyến của ΔAHC

⇒ HF = 1212AC (Trong tam giác vuông, đường trung tuyến ứng với cạnh huyền thì bằng nửa cạnh ấy)

Xét ΔABC:

{M là trung điểm của BCE là trung điểm của AB{M là trung điểm của BCE là trung điểm của AB

⇒ ME là đường trung bình của ΔABC

⇒ ME = 1212AC

Như vậy ⎧⎪ ⎪⎨⎪ ⎪⎩HF = 12ACME = 12AC{HF = 12ACME = 12AC

⇒ HF = ME (4)

Từ (3), (4) ⇒ Tứ giác EHMF là hình thang cân (2 đường chéo bằng nhau HF = ME) (đpcm)

26 tháng 11 2021

 mn giúp mik vẽ hình dc ko

19 tháng 11 2016

(Hình bạn tự vẽ nha)

a ,

Tứ giác AEMF có góc A = góc AME = góc AFM = 90 độ nên là hình chữ nhật .

b ,

Xét tam giác vuông ABC có đường trung tuyến AM ứng với cạnh huyền BC nên AM = MC = MB

Vì N là điểm đối xứng của M qua F nên MN vuông góc với AC và MF=NF .

-> AC là đường trung trực của MN

->MC = NC , AM = AN (áp dụng tính chất của đường trung trực ) mà AM = MC nên MC=NC=AM=AN .

-> Tứ giác MANC là hình thoi.

c ,

Để hình chữ nhật AEMF là hình vuông thì AE = AF (1)

Vì AM=BM và ME vuông góc với AB nên ME là đường trung trực của AB .

-> AE = EB (2)

Vì tứ giác MANC là hình thoi nên AF=FC (3)

Từ (1),(2) và (3) suy ra BE = FC (4)

Từ (1) và (4) suy ra : AE + BE = AF + FC

hay AB = AC

-> Tam giác ABC là tam giác vuông cân .

Vậy để tứ giác AEMF là hình vuông thì tam giác ABC là tam giác vuông cân .

 

 

Bài 3: Cho tam giác ABC. Gọi D, E, F theo thứ tự là trung điểm của AB, BC, CA. Gọi M, N, P, Qtheo thứ tự là trung điểm của AD, AF, EF, ED.a) Tứ giác MNPQ là hình gì? Vì sao?7b) Tam giác ABC có điều kiện gì thì MNPQ là hình chữ nhật?c) Tam giác ABC có điều kiện gì thì MNPQ là hình thoi?Bài 4: Cho tam giác ABC vuông tại A, đường trung tuyến AM. Gọi H là điểm đối xứng với M quaAB, E là giao điểm của MH và AB....
Đọc tiếp

Bài 3: Cho tam giác ABC. Gọi D, E, F theo thứ tự là trung điểm của AB, BC, CA. Gọi M, N, P, Q
theo thứ tự là trung điểm của AD, AF, EF, ED.
a) Tứ giác MNPQ là hình gì? Vì sao?

7

b) Tam giác ABC có điều kiện gì thì MNPQ là hình chữ nhật?
c) Tam giác ABC có điều kiện gì thì MNPQ là hình thoi?
Bài 4: Cho tam giác ABC vuông tại A, đường trung tuyến AM. Gọi H là điểm đối xứng với M qua
AB, E là giao điểm của MH và AB. Gọi K là điểm đối xứng với M qua AC, F là giao điểm của MK
và AC.
a) Xác định dạng của các tứ giác AEMF, AMBH, AMCK.
b) Chứng minh rằng H đối xứng với K qua A.
c) Tam giác vuông ABC có thêm điều kiện gì thì AEMF là hình vuông?
Bài 5: Cho tam giác ABC cân tại A, đường cao AD. Gọi E là điểm đối xứng với D qua trung điểm
M của AC.
a) Tứ giác ADCE là hình gì? Vì sao?
b) Tứ giác ABDM là hình gì? Vì sao?
c) Tam giác ABC có thêm điều kiện gì thì ADCE là hình vuông?
d) Tam giác ABC có thêm điều kiện gì thì ABDM là hình thang cân?

1

https://lazi.vn/edu/exercise/cho-tam-giac-abc-goi-d-e-f-theo-thu-tu-la-trung-diem-cua-ab-bc-ca-goi-m-n-p-q-theo-thu-tu-la-trung-diem

Bạn xem tại link này nhé

Học tốt!!!!!!

14 tháng 11 2021

 mn ơi giupsmik với nhanh nhanh 

 gấp lắm

14 tháng 11 2021

a, Vì I là trung điểm AC và MK nên AMCK là hbh

Do đó AK//CM hay AK//BM và \(AK=BM=MC\) (M là trung điểm BC)

Vậy ABMK là hbh

b, Từ câu a ta có AMCK là hbh

c, Để AMCK là hcn thì \(AM\perp MC\) hay AM là đường cao tam giác ABC hay tam giác ABC cân tại A (AM vừa là đường cao vừa là trung tuyến)

a; Xét tứ giác AEMF có

góc AEM=góc AFM=góc FAE=90 độ

=>AEMF là hình chữ nhật

b: Xét ΔBAC có

M là trung điểm của BC

ME//AC

=>E là trung điểm của AB

Xét tứ giác AMBN có

E là trung điẻm chung của AB và MN

MA=MB

=>AMBN là hình thoi

c: Để AMBN là hình vuông thì góc AMB=90 độ

=>góc B=45 độ

d: AM=5cm

=>AN=5cm

MN=AC=căn 10^2-8^2=6cm

\(P=\dfrac{5+5+6}{2}=8\left(cm\right)\)

\(S=\sqrt{8\cdot\left(8-5\right)\left(8-5\right)\cdot\left(8-6\right)}=\sqrt{8\cdot2\cdot3\cdot3}=4\cdot3=12\left(cm^2\right)\)

3 tháng 2 2023

mình cảm ơn nhiều ạ !!

Bài 1: Cho tứ giác ABCD có BC = AD và BC không song song với AD, gọi M, N,P, Q, E, F lần lượt là trung điểm của các đoạn thẳng AB, BC, CD, DA, AC, BD.a) Chứng minh tứ giác MEPF là hình thoi.b) Chứng minh các đoạn thẳng MP, NQ, EF cùng cắt nhau tại một điểm.c) Tìm thêm điều kiện của tứ giác ABCD để N, E, F, Q thẳng hàngBài 2: Cho tam giác ABC vuông tại A (AB<AC), M là trung điểm BC, từ M kẻđường thẳng...
Đọc tiếp

Bài 1: Cho tứ giác ABCD có BC = AD và BC không song song với AD, gọi M, N,
P, Q, E, F lần lượt là trung điểm của các đoạn thẳng AB, BC, CD, DA, AC, BD.
a) Chứng minh tứ giác MEPF là hình thoi.
b) Chứng minh các đoạn thẳng MP, NQ, EF cùng cắt nhau tại một điểm.
c) Tìm thêm điều kiện của tứ giác ABCD để N, E, F, Q thẳng hàng
Bài 2: Cho tam giác ABC vuông tại A (AB<AC), M là trung điểm BC, từ M kẻ
đường thẳng song song với AC, AB lần lượt cắt AB tạt E, cắt AC tại F
a) Chứng minh EFCB là hình thang
b) Chứng minh AEMF là hình chữ nhật
c) Gọi O là trung điểm AM. Chứng minh: E và F đối xứng qua O.
d) Gọi D là trung điểm MC. Chứng minh: OMDF là hình thoi
Bài 3: Cho tam giác ABC có AB<AC. Gọi M, N, P lần lượt là trung điểm của AB,
AC, BC. Vẽ đường cao AH của tam giác ABC. Tứ giác HMNP là hình gì.
Bài 4: Cho tứ giác ABCD có góc DAB = góc BCD = 120 0 . Tính số đo của hai góc
còn lại để ABCD là hình bình hành.
Bài 5: Cho hình bình hành ABCD. Trên đưởng chéo AC chọn hai điểm E và F sao
cho AE=EF=FC.
a) Tứ giác BEDF là hình gì?
b) Chứng minh CFDAEB .
c) Chứng minh CFBEAD .
Bài 6: Cho tam giác ABC cân tại A, đường cao AD. Gọi E là điểm đối xứng với D qua
trung điểm M của AC.
a) Tứ giác ADCE là hình gì? Vì sao?
b) Tứ giác ABDM là hình gì? Vì sao?
c) Tam giác ABC có thêm điều kiện gì thì ADCE là hình vuông?
d) Tam giác ABC có thêm điều kiện gì thì ABDM là hình thang cân?

5
2 tháng 3 2020

Bài 1:

A B C D M N P Q E F

a) Xét tam giác ABC có M là trung điểm của AB (gt) ,E là trung điểm của AC (gt)

\(\Rightarrow ME\)là đường trung bình tam giác ABC

\(\Rightarrow ME=\frac{1}{2}BC\left(tc\right)\left(1\right)\)

Xét tam giác ADC có E là trung điểm của AC (gt) ,P là trung điểm của DC (gt)

\(\Rightarrow PE\)là đường trung bình của tam giác ADC

\(\Rightarrow PE=\frac{1}{2}AD\left(tc\right)\left(2\right)\)

mà \(AD=BC\left(gt\right)\left(3\right)\)

Từ (1) , (2) và (3) \(\Rightarrow EM=PE\)

CMTT: \(PE=FP,FM=ME\)

\(\Rightarrow ME=EP=PF=FM\)

Xét tứ giác MEPF có:

\(ME=EP=PF=FM\left(cmt\right)\)

\(\Rightarrow MEPF\)là hình thoi ( dhnb)

 b) Vì \(MEPF\)là hình thoi (cmt)

\(\Rightarrow FE\)giao với MP tại trung điểm mỗi đường (tc)  (4)

Xét tam giác ADB có M là trung điểm của AB(gt) ,Q là trung điểm của AD (gt)

\(\Rightarrow MQ\)là đường trung bình của tam giác ADB

\(\Rightarrow MQ//DB,MQ=\frac{1}{2}DB\left(tc\right)\left(5\right)\)

Xét tam giác BDC có N là trung điểm của BC(gt) , P là trung điểm của DC(gt)

\(\Rightarrow NP\)là đường trung bình của tam giác BDC

\(\Rightarrow NP//DB,NP=\frac{1}{2}DB\left(tc\right)\left(6\right)\)

Từ (5) và (6) \(\Rightarrow MQ//PN,MQ=PN\)

Xét tứ giác MQPN có \(\Rightarrow MQ//PN,MQ=PN\)

\(\Rightarrow MQPN\)là hình bình hành (dhnb)

\(\Rightarrow MP\)giao QN tại trung điểm mỗi đường (tc) (7)

Từ (4) và (7) \(\Rightarrow MP,NQ,EF\)cắt nhau tại một điểm 

c) Xét tam giác ABD có Q là trung điểm của AD (gt), F là trung điểm của BD(gt)

\(\Rightarrow QF\)là đường trung bình của tam giác ADB

\(\Rightarrow QF//AB\left(8\right)\)

CMTT: \(FN//CD\)và \(EN//AB\)

Mà Q,F,E,N thẳng hàng 

\(\Rightarrow AB//CD\)

Vậy để Q,F,E,N thẳng hàng thì tứ giác ABCD phải thêm điều kiện  \(AB//CD\)


 

2 tháng 3 2020

Tối về mình làm nốt  nhé giờ mình có việc 

11 tháng 8 2017

giúp mik giải zs ạ mình đq cần gấp

a) Xét ΔABC có 

M là trung điểm của BC(gt)

F là trung điểm của AC(gt)

Do đó: MF là đường trung bình của ΔABC(Định nghĩa đường trung bình của tam giác)

Suy ra: MF//AB và \(MF=\dfrac{AB}{2}\)(Định lí 2 về đường trung bình của tam giác)

mà E\(\in\)AB và \(AE=\dfrac{AB}{2}\)(E là trung điểm của AB)

nên MF//AE và MF=AE

Xét tứ giác AEMF có 

MF//AE(cmt)

MF=AE(cmt)

Do đó: AEMF là hình bình hành(Dấu hiệu nhận biết hình bình hành)

b) Hình bình hành AEMF trở thành hình chữ nhật khi \(\widehat{BAC}=90^0\)

c) Xét tứ giác AMCK có 

F là trung điểm của đường chéo AC

F là trung điểm của đường chéo MK

Do đó: AMCK là hình bình hành(Dấu hiệu nhận biết hình bình hành)