Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Diện tích tam giác \(ABC\)là:
\(60\times40\div2=1200\left(cm^2\right)\)
Có: \(S_{ABC}=S_{ANM}+S_{BND}+S_{CDM}+S_{DMN}\)
\(\Leftrightarrow S_{DMN}=S_{ABC}-S_{ANM}-S_{BND}-S_{CDM}\)
Để tích diện tích tam giác \(DMN\)ta sẽ tính diện tích các tam giác \(ANM,BND,CDM\).
\(S_{AMB}=\frac{1}{3}\times S_{ABC}\)(chung đường cao hạ từ \(B\), \(AM=\frac{1}{3}\times AC\))
\(S_{ANM}=\frac{1}{2}\times S_{AMB}\)(chung đường cao hạ từ \(M\), \(AN=\frac{1}{2}\times AB\))
suy ra \(S_{ANM}=\frac{1}{2}\times\frac{1}{3}\times S_{ABC}=\frac{1}{6}\times S_{ABC}\).
Một cách tương tự, ta cũng suy ra được \(S_{BND}=\frac{1}{2}\times\frac{1}{2}\times S_{ABC}=\frac{1}{4}\times S_{ABC}\)
\(S_{CDM}=\frac{1}{2}\times\frac{1}{3}\times S_{ABC}=\frac{1}{6}\times S_{ABC}\)
\(S_{DMN}=S_{ABC}-S_{ANM}-S_{BND}-S_{CDM}\)
\(=S_{ABC}-\frac{1}{6}\times S_{ABC}-\frac{1}{4}\times S_{ABC}-\frac{1}{6}\times S_{ABC}\)
\(=\frac{5}{12}\times S_{ABC}\)
\(=\frac{5}{12}\times1200=500\left(cm^2\right)\)
a, - Ta có : \(\left\{{}\begin{matrix}S_{AMD}=\dfrac{1}{2}AM.h\\S_{ADC}=\dfrac{1}{2}AC.h\end{matrix}\right.\)
Mà \(AC=3AM\)
\(\Rightarrow S_{ADC}=3S_{AMD}\)
Lại có : \(\left\{{}\begin{matrix}S_{ABC}=\dfrac{1}{2}BC.h\\S_{ADC}=\dfrac{1}{2}DC.h\end{matrix}\right.\)
Mà \(BC=2DC\)
\(\Rightarrow S_{ABC}=2S_{ADC}=2.3S_{ADM}=6S_{ADM}\)
b, CMTT câu a ta được : \(\left\{{}\begin{matrix}S_{AMN}=\dfrac{1}{6}S_{ABC}\\S_{CMD}=\dfrac{1}{3}S_{ABC}\\S_{BND}=\dfrac{1}{4}S_{ABC}\end{matrix}\right.\)
\(\Rightarrow S_{DMN}=\left(1-\dfrac{1}{6}-\dfrac{1}{3}-\dfrac{1}{4}\right)S_{ABC}=\dfrac{1}{4}S_{ABC}=160\left(cm^2\right)\)
a: Đặt AH=x
=>BC=4x
Theo đề, ta có: 1/2*4x*x=72
=>2x^2=72
=>x=6
b: Xét ΔCAB có MN//AB
nên ΔCMN đồng dạng với ΔCBA
=>S CMN/ SCBA=(CM/CB)^2=1/4
=>SCMN=18cm2
Giải
Ta có hình vẽ (tự vẽ hình)
A)Độ dài chiều cao AH là:
12×2/3=8 (cm)
Diện tích tam giác ABC là:
12×8:2=48 (cm2)
B)vì AM=3/5 MC
Nên AM=3/8 AC
Ta có: S abm =3/8× S abc (vì 2 tam giác có chung chiều cao hạ từ đỉnh B xuống đáy AC;AM=3/8×AC)
S abm=3/8×48=18 (cm2)
Vậy S abc=48 cm2;S abm=18 cm2
a: Diện tích tam giác ABC là:
\(S_{ABC}=\dfrac{1}{2}\times BC\times AH=\dfrac{1}{2}\times60\times40=1200\left(cm^2\right)\)
b: Vì \(AM=\dfrac{1}{3}AC\)
nên \(S_{ABM}=\dfrac{1}{3}\times S_{ABC}\)
Vì N là trung điểm của AB
nên \(S_{AMN}=\dfrac{1}{2}\times S_{ABM}=\dfrac{1}{6}\times S_{ABC}\)
Vì D là trung điểm của BC
nên \(S_{ADB}=S_{ADC}=\dfrac{1}{2}\times S_{ABC}\)
Vì \(AM=\dfrac{1}{3}AC\)
nên \(CM=\dfrac{2}{3}CA\)
=>\(S_{CDM}=\dfrac{2}{3}\times S_{CDA}=\dfrac{2}{3}\times\dfrac{1}{2}\times S_{ABC}=\dfrac{1}{3}\times S_{ABC}\)
Vì N là trung điểm của AB
nên \(S_{BND}=\dfrac{1}{2}\times S_{ADB}=\dfrac{1}{4}\times S_{ABC}\)
Ta có: \(S_{AMN}+S_{MDC}+S_{NBD}+S_{MND}=S_{ABC}\)
=>\(S_{MND}=S_{ABC}\left(1-\dfrac{1}{3}-\dfrac{1}{6}-\dfrac{1}{4}\right)=\dfrac{1}{4}\times S_{ABC}\)
=>\(S_{MND}=\dfrac{1}{4}\times1200=300\left(cm^2\right)\)