Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu rút gọn dễ nên bạn tự làm nha
2/ x2 + y2 - 4x - 2y + 5 = (x2 - 4x + 4) + (y2 - 2y + 1) = (x - 2)2 + (y -1)2
Khi x = 2; y = 1 thì x2 + y2 - 4x - 2y + 5 = 0
Vậy ngoại trừ cặp (x;y) = (2;1) thì còn lại cái đó đúng
P = ( xy + 1 ) ( x2y2 - xyt + 1 )
= x3y3 + 1
= \(\left(5.\frac{3}{5}\right)^3+1\)
= \(27+1\)
= 28
trôi hết đề : Câu 7
\(\left(3-\sqrt{2}\right)\)
câu 8:
\(P=\frac{1+\frac{4}{x-2}}{\frac{x^2-4}{2}}\) để tồn tại P \(\hept{\begin{cases}x\ne2\\x\ne-2\end{cases}}\)(*)
Với đk (*)=>\(P=\frac{\left(x+2\right)}{\left(x-2\right)}.\frac{2}{\left(x-2\right)\left(x+2\right)}=\frac{2}{\left(x-2\right)^2}\)
\(2.A=x\left(x^2-y\right)-x^2\left(x+y\right)+y\left(x^2-x\right)=x^3-xy-x^3-x^2y+x^2y-xy=-2xy\\ Thayx=\frac{1}{2};y=-100vàoAđược:A=-2.\frac{1}{2}.\left(-100\right)=100\)
\(3.x\left(5-2x\right)+2x\left(x-1\right)=15\Leftrightarrow5x-2x^2+2x^2-2x=15\Leftrightarrow3x=15\Leftrightarrow x=5\)